1,534
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Recovery of thermal load parameters by means of the Monte Carlo method with fixed and meshless random walks

Pages 1-40 | Received 04 Feb 2021, Accepted 04 Dec 2021, Published online: 24 Dec 2021

References

  • Zienkiewicz OC, Taylor RL. Finite element method its basis and fundamentals. Oxford: Elsevier; 2005.
  • Li S, Liu WK. Meshfree and particle methods and their applications. Appl Mech Rev. 2002;55:1–34.
  • Liu GR. Mesh free methods: moving beyond the finite element method. Boca Raton (FL): CRC Press; 2003.
  • Orkisz J. Finite difference method (part III). In Handbook of computational solid mechanics. Springer-Verlag; 1998. p. 336–431.
  • Perrone N, R. Kao N. A general finite difference method for arbitrary meshes. Comput Struct. 1975;5:45–58.
  • Liszka T, Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput Struct. 1980;11:83–95.
  • Milewski S. Selected computational aspects of the meshless finite difference method. Numer Algorithms. 2013;63(1):107–126.
  • Wang G, Guo F. A stochastic boundary element method for piezoelectric problems. Eng Anal Bound Elem. 2018;95:248–254.
  • Holland JR. Adaptation in natural and artificial systems. Cambridge (MA): MIT Press; 1975.
  • Goldberg D. Genetic algorithms in search, optimization and machine learning. Reading (MA): Addison-Wesley Professional; 1989.
  • Sabelfeld KK. Monte Carlo methods in boundary value problems. Berlin: Springer-Verlag; 1991.
  • Ripley BD. Pattern recognition and neural networks. Cambridge (MA): Cambridge University Press; 2007.
  • Moller B, Beer M. Fuzzy randomness, uncertainty in civil engineering and computational mechanics. Berlin: Springer–Verlag; 2004.
  • Hansen PC. The L-Curve and its use in the numerical treatment of inverse problems. In: Computational inverse problems in electrocardiology, advances in computational bioengineering. WIT Press; 2000. p. 119–142.
  • Cazacu R, Grama L. Steel truss optimization using genetic algorithms and FEA. Procedia Technol. 2014;12(C):339–346.
  • Czubacki R, Lewiński T. Topology optimization of spatial continuum structures: made of nonhomogeneous material of cubic symmetry. J Mech Mater Struct. 2015;10(4):519–535.
  • Lundgaard C, Sigmund O. Design of segmented off-diagonal thermoelectric generators using topology optimization. Appl Energy. 2019;236:950–960.
  • Luh GC, Wu CY. Non-linear system identification using genetic algorithms. Proc Inst Mech Eng Part I J Syst Control Eng. 1999;213(2):105–118.
  • Forestier R, Massoni E, Chastel Y. Estimation of constitutive parameters using an inverse method coupled to a 3D finite element software. J Mater Process Technol. 2002;125–126:594–601.
  • Kazemi Z, Hematiyan MR, Shiah YC. An efficient load identification for viscoplastic materials by an inverse meshfree analysis. Int J Mech Sci. 2018;136:303–312.
  • Attia MH, Fraser S, Osman MOM. On-line estimation of time-variant thermal load applied to machine tool structures using a s-domain inverse solution. Int J Mach Tools Manufact. 1999;39(6):985–1000.
  • Jin B, Marin L. The method of fundamental solutions for inverse source problems associated with the steady-state heat conduction. Int J Numer Methods Eng. 2007;69(8):1570–1589.
  • Milewski S. Determination of the truss static state by means of the combined FE/GA approach, on the basis of strain and displacement measurements. Inverse Probl Sci Eng. 2019;27(11):1537–1558.
  • Mukhopadhyay SC, Ihara I. Sensors and technologies for structural health monitoring: a review, new developments in sensing technology for shm, LNEE 96. Mukhopadhyay SC, editor, Berlin: Springer-Verlag; 2011.
  • Hernandez EM. Efficient sensor placement for state estimation in structural dynamics. Mech Syst Signal Process. 2017;85:789–800.
  • Helmig T, Al-Sibai F, Kneer R. Estimating sensor number and spacing for inverse calculation of thermal boundary conditions using the conjugate gradient method. Int J Heat Mass Transf. 2020;153:119638.
  • Ohe T, Ohnaka K. Boundary element approach for an inverse source problem of the Poisson equation with a one-point-mass like source. Appl Math Model. 1994;18(4):216–223.
  • Gu Y, Lei J, Fan CM, et al. The generalized finite difference method for an inverse time-dependent source problem associated with three-dimensional heat equation. Eng Anal Bound Elem. 2018;91:73–81.
  • Jiang J, Mohamed SM, Seaid M, et al. Identifying the wavenumber for the inverse Helmholtz problem using an enriched finite element formulation. Comput Methods Appl Mech Eng. 2018;340:615–629.
  • Khan MN, Ahmad I, Ahmad H. A radial basis function collocation method for space-dependent inverse heat problems. J Appl Comput Mech. 2020;6:1187–1199.
  • Koulouri A, Rimpiläinen V, Brookes M, et al. Compensation of domain modelling errors in the inverse source problem of the Poisson equation: application in electroencephalographic imaging. Appl Numer Math. 2016;106:24–36.
  • Rond A, Giryes R, Elad M. Poisson inverse problems by the plug-and-play scheme. J Vis Commun Image Represent. 2016;41:96–108.
  • Alves C, Martins N, Roberty N. Full identification of acoustic sources with multiple frequencies and boundary measurements. Inverse Probl Imag. 2009;3(2):275–294.
  • Frackowiak A, Wolfersdorf JV, Ciałkowski M. Solution of the inverse heat conduction problem described by the Poisson equation for a cooled gas-turbine blade. Int J Heat Mass Transf. 2011;54(5–6):1236–1243.
  • Bergagio M, Li H, Anglart H. An iterative finite-element algorithm for solving two-dimensional nonlinear inverse heat conduction problems. Int J Heat Mass Transf. 2018;126(A):281–292.
  • Wen H, Yan G, Chuanzeng Z, et al. The generalized finite difference method for an inverse boundary value problem in three-dimensional thermo-elasticity. Adv Eng Softw. 2019;131:1–11.
  • Wang X, Li H, He L, et al. Evaluation of multi-objective inverse heat conduction problem based on particle swarm optimization algorithm, normal distribution and finite element method. Int J Heat Mass Transfer. 2018;127(A):1114–1127.
  • Gawad J, Szeliga D. Application of evolutionary algorithms for inverse analysis and computations. Metal Foundry Eng. 2002;28(2):137–150.
  • Hafid M, Lacroix M. Inverse method for simultaneously estimating multi-parameters of heat flux and of temperature-dependent thermal conductivities inside melting furnaces. Appl Therm Eng. 2018;14:981–989.
  • Mierzwiczak M, Kołodziej JA. The determination of heat sources in two dimensional inverse steady heat problems by means of the method of fundamental solutions. Inverse Probl Sci Eng. 2011;19(6):777–792.
  • Wen J, Yamamoto M, Wei T. Simultaneous determination of a time-dependent heat source and the initial temperature in an inverse heat conduction problem. Inverse Probl Sci Eng. 2013;21(3):485–499.
  • Nakamura T, Kamimura Y, Igawa H, et al. Inverse analysis for transient thermal load identification and application to aerodynamic heating on atmospheric reentry capsule. Aerosp Sci Technol. 2014;38:48–55.
  • Davies AJ, Dixon LCW, Roy R, et al. Regularisation and the inverse problem. Adv Eng Softw. 1999;30(8):557–562.
  • Ismailov MI, Çiçek M. Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl Math Model. 2016;40(7):4891–4899.
  • Bodin A, Sietsma J, van der Zwaag S. Flow stress prediction during intercritical deformation of a lowcarbon steel with a rule of mixtures and Fe-simulations. Scr Mater. 2001;45(8):875–882.
  • Ferreira MDC, Venturini WS. Inverse analysis for two-dimensional structures using the boundary element method. Adv Eng Softw. 2010;41(9):1061–1072.
  • Gu Y, Wang L, Chen W, et al. Application of the meshless generalized finite difference method to inverse heat source problems. Int J Heat Mass Transf. 2017;108(Part A):721–729.
  • Liu JC, Li XC. Reconstruction algorithms of an inverse source problem for the Helmholtz equation. Numer Algorithms. 2020;84:909–933.
  • Metropolis N, Ulam S. The Monte Carlo method. J Am Stat Assoc. 1949;44(247):335–341.
  • Eckhardt R, Ulam S, von Neumann J. The Monte Carlo method. Los Alamos Sci. 1987;15:131–137. Special Issue
  • Milewski S. Combination of the meshless finite difference approach with the Monte Carlo random walk technique for solution of elliptic problems. Comput Math Appl. 2018;76(4):854–876.
  • Mosegaard K, Tarantola A. Monte Carlo sampling of solutions to inverse problems. J Geophys Res. 1995;100(B7):12431–12447.
  • Mosegaard K, Sambridge M. Monte Carlo analysis of inverse problems. Inverse Probl. 2002;18(3):R29.
  • Hou T, Nuyens D, Roels S, et al. Quasi-Monte Carlo based uncertainty analysis: sampling efficiency and error estimation in engineering applications. Reliab Eng Syst Safety. 2019;19:106549.
  • Shen Q, Wu X, Chen J, et al. Solving geosteering inverse problems by stochastic hybrid Monte Carlo method. J Pet Sci Eng. 2018;16:9–16.
  • de las Heras MJF, Manguán MC, Millán ER, et al. Determination of SEA loss factors by Monte Carlo filtering. J Sound Vib. 2020;479:115348.
  • Pasculli A, Calista M, Sciarra N. Variability of local stress states resulting from the application of Monte Carlo and finite difference methods to the stability study of a selected slope. Eng Geology. 2018;245:370–389.
  • Wyatt MJ, Davies G, Snell C. A new difference based finite element method. Instn Engin. 1975;59(2):395–409.
  • Lancaster P, Salkauskas K. Surfaces generated by moving least-squares method. Math Comp. 1981;155(37):141–158.
  • Lancaster P, Salkauskas K. Curve and surface fitting. London: Academic Press Inc; 1990.
  • Milewski S. A Matlab software for approximate solution of 2D elliptic problems by means of the meshless Monte Carlo random walk method. Numer Algorithms. 2020;83(2):565–591.
  • Milewski S. Application of the Monte Carlo method with meshless random walk procedure to selected scalar elliptic problems. Arch Mech. 2019;71(4-5):337–375.
  • Milewski S. Development of simple effective cloud of nodes and triangular mesh generators for meshless and element-based analyses – implementation in Matlab. Computer Assisted Methods Eng Sci. 2017;24(3):157–180.
  • Milewski S, Orkisz J. Improvements in the global a-posteriori error estimation of the FEM and MFDM solutions. Comput Inform. 2011;30(3):639–653.
  • Oden JT, Prudhomme S. Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl. 2001;41:733–756.
  • Jaworska I. On the ill-conditioning in the new higher order multipoint method. Comput Math Appl. 2013;66(3):238–249.
  • Milewski S. Meshless finite difference method with higher order approximation – applications in mechanics. Arch Comput Methods Eng. 2012;19(1):1–49.
  • Talebi S, Gharehbash K, Jalali HR. Study on random walk and its application to solution of heat conduction equation by Monte Carlo method. Prog Nucl Energy. 2017;96:18–35.
  • Reynolds JF. A proof of the random-walk method for solving Laplace's equation in 2-D. Math Gazette Math Assoc. 1965;49(370):416–420.
  • Press WH, Teukolsky SA, Vetterling WT, et al. Numerical recipes. Cambridge Univ.Press; 1999. (The art of Parallel Scientific Computing