1,790
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A mechanics principle based inverse technique for real-time monitoring of wear-level of contact wire in pantograph-catenary systems

, ORCID Icon, ORCID Icon &
Pages 75-93 | Received 11 Dec 2019, Accepted 24 Dec 2021, Published online: 03 Feb 2022

References

  • Zhai D, Pan Y, Li P, et al. Estimating the vigilance of high-speed rail drivers using a stacking ensemble learning method. IEEE Sens J. 2021;21(15):16826–16838.
  • Wang Y, Liu Z, Fan F, et al. Review of research development of pantograph-catenary arc model and electrical characteristics. J China Railway Soc. 2013;35(8):35–43.
  • Cho CJ, Park Y. New monitoring technologies for overhead contact line at 400 km· h− 1. Engineering. 2016;2(3):360–365.
  • Xin T, Roberts C, Weston P, et al. Condition monitoring of railway pantographs to achieve fault detection and fault diagnosis. Proceedings of the Institution of Mechanical engineers. Part F: Journal of Rail and Rapid Transit. 2018;234(3):289–300.
  • Bucca G, Collina A. A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system. Wear. 2009;266(1):46–59.
  • Bucca G, Collina A. Electromechanical interaction between carbon-based pantograph strip and copper contact wire: A heuristic wear model. Tribol Int. 2015;92:47–56.
  • Yamashita C, Sugahara A. Wear modes of contact wire and contact strip under electric current condition. Q Rep RTRI. 2014;55(2):67–72.
  • Rogalski A. Infrared detectors: an overview. Infrared Phys Technol. 2002;43(3):187–210.
  • Huda ASN, Taib S, Ghazali KH, et al. A new thermographic NDT for condition monitoring of electrical components using ANN with confidence level analysis. ISA Trans. 2014;53(3):717–724.
  • Jaffery ZA, Dubey AK. Design of early fault detection technique for electrical assets using infrared thermograms. Int J Electr Power Energy Syst. 2014;63:753–759.
  • Shebani A, Iwnicki S. Prediction of wheel and rail wear under different contact conditions using artificial neural networks. Wear. 2018 2018;406-407:173–184.
  • Shing A, Miu F., editors Predicting the contact wire wear of a railway system using ANN. CORE 2012, Rail-the core of integrated transport, conference on railway engineering, Perth, Western Australia, 7-10 September 2012; 2012.
  • Wang H, Núñez A, Liu Z, et al. Analysis of the evolvement of contact wire wear irregularity in railway catenary based on historical data. Veh Syst Dyn. 2018;56(8):1207–1232.
  • Song Y, Wang H, Liu Z. An investigation on the current collection quality of railway pantograph-catenary systems with contact wire wear degradations. IEEE Trans Instrum Meas. 2021;70:1–11.
  • Karakose E, Gencoglu MT, Karakose M, et al. A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph–catenary systems. IEEE Trans Ind Inf. 2017;13(2):635–643.
  • Hayasaka T, Shimizu M, Nezu K. Development of contact-loss measuring system using ultraviolet ray detection. Q Rep RTRI. 2009;50(3):131–136.
  • Koyama T, Ikeda M, Kobayashi S, et al. Measurement of the contact force of the pantograph by image processing technology. Q Rep RTRI. 2014;55(2):73–78.
  • Chen P, Xu C, Li Z, et al. Design and implementation of non-contact detection system for catenary based on double linear array cameras. AIP Conf Proc. 2017;1834(1):020014.
  • Fukai H, Watabe Y, Niwakawa M, et al., editors Automatic correction of measurement position using robust matching in contact wire inspection system. 2016 11th France-Japan & 9th Europe-Asia Congress on Mechatronics (MECATRONICS) /17th International Conference on Research and Education in Mechatronics (REM); 2016 15-17 June 2016.
  • Lindner L, Sergiyenko O, Rodríguez-Quiñonez JC, et al., editors Continuous 3D scanning mode using servomotors instead of stepping motors in dynamic laser triangulation. 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE); 2015 3-5 June 2015.
  • Zhou J, Han Z, Wang L., editors A steady arm slope detection method based on 3D point cloud segmentation. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC); 2018 27-29 June 2018.
  • Yin W, Zhu E, Zhu X, et al., editors Landmark-based spectral clustering with local similarity representation. Theoretical Computer Science; 2017 2017//; Singapore: Springer Singapore.
  • Borromeo S, Aparicio JL, Martinez PM. MEDES: contact wire wear measuring system used by the spanish national railway (RENFE). Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit. 2003;217(3):167–175.
  • Torroja Y, Garcia S, Aparicio JL, et al., editors An artificial vision system used for the measurement of the overhead wire in railway applications. Conference of the IEEE Industrial Electronics Society; 2002.
  • Van Gigch JM, Smorenburg C, Benschop AW. Le système de mesure de l'épaisseur des fils de contact des chemins de fer néerlandais (NS); contact-wires thickness measurement system of Netherlands Railways (NS). Rail int (Ed fr. 1991;22(4):20–31. French.
  • Kinoshita N, Himeno Y, Igata R, editors. Development of a high-speed overhead contact line measurement device for the Kyushu Shinkansen. WIT Transactions on The Built Environment; 2010;114:155–167.
  • Liu GR, Ma WB, Han X. An inverse procedure for identification of loads on composite laminates. Composites Part B. 2002;33(6):425–432.
  • Liu GR, Ma WB, Han X. An inverse procedure for determination of material constants of composite laminates using elastic waves. Comput Methods Appl Mech Eng. 2002;191(33):3543–3554.
  • Seo J-H, Sugiyama H, Shabana AA. Three-dimensional large deformation analysis of the multibody pantograph/catenary systems. Nonlinear Dyn. 2005;42(2):199–215.
  • Zhang W, Zhou N, Li R, et al. Pantograph and catenary system with double pantographs for high-speed trains at 350 km/h or higher. J Modern Transport. 2011;19(1):7–11.
  • Liu G-R. Meshfree methods: moving beyond the finite element method. Boca Raton: CRC press; 2009.
  • Liu G-R, Han X. Computational inverse techniques in nondestructive evaluation. Boca Raton: CRC press; 2003.
  • Liu G-R, Quek SS. The finite element method: a practical course. Bristol: Butterworth-Heinemann; 2013.
  • Collina A, Bruni S. Numerical simulation of pantograph-overhead equipment interaction. Veh Syst Dyn. 2002;38(4):261–291.
  • Kulkarni S, Pappalardo CM, Shabana AA. Pantograph/catenary contact formulations. J Vib Acoust. 2016;139(1):011010.
  • 50318 ECfESE. Railway applications–current collection systems–validation of simulation of the dynamic interaction between pantograph and overhead contact line. European Standards (EN) Brussels; 2002.
  • Bruni S, Bucca G, Carnevale M, et al. Pantograph–catenary interaction: recent achievements and future research challenges. Int J Rail Transport. 2018;6(2):57–82. doi:10.1080/23248378.2017.1400156.
  • Rauter FG, Pombo J, Ambrósio Jet al., editors. Multibody modeling of pantographs for pantograph-catenary interaction. IUTAM symposium on multiscale problems in multibody system contacts. Dordrecht: Springer Netherlands; 2007. p. 205–226.
  • Nagasaka S, Aboshi M. Measurement and estimation of contact wire unevenness. Q Rep RTRI. 2004;45(2):86–91.
  • Wang H, Núñez A, Liu Z, et al. Analysis of the evolvement of contact wire wear irregularity in railway catenary based on historical data. Veh Syst Dyn. 2017;153:1–26.
  • Nåvik P, Rønnquist A, Stichel S. Variation in predicting pantograph–catenary interaction contact forces, numerical simulations and field measurements. Veh Syst Dyn. 2017;55(9):1265–1282.
  • Bruni S, Ambrosio J, Carnicero A, et al. The results of the pantograph–catenary interaction benchmark. Veh Syst Dyn. 2015;53(3):412–435.