1,290
Views
6
CrossRef citations to date
0
Altmetric
Research Article

A finite-difference and Haar wavelets hybrid collocation technique for non-linear inverse Cauchy problems

, &
Pages 121-140 | Received 04 Aug 2021, Accepted 31 Dec 2021, Published online: 03 Feb 2022

References

  • Liu C-S. Finding unknown heat source in a nonlinear cauchy problem by the lie-group differential algebraic equations method. Eng Anal Bound Elem. 2015;50:148–156.
  • Farcas A, Lesnic D. The boundary-element method for the determination of a heat source dependent on one variable. J Eng Math. 2006;54(4):375–388.
  • Berntsson F. Numerical methods for inverse heat conduction probelms [PhD thesis]. Linköping Studies in Science and Technology. Disseration No. 723, Linköping University Department of Mathematics; 2001 Dec.
  • Carasso A. Determining surface temperatures from interior observations. SIAM J Appl Math. 1982;42(3):558–574.
  • Eldén L. The numerical solution of a non-characteristic Cauchy problem for a parabolic equation. In: Numerical treatment of inverse problems in differential and integral equations. Springer; 1983. p. 246–268.
  • Eldén L. Numerical solution of the sideways heat equation by difference approximation in time. Inverse Probl. 1995;11(4):913–923.
  • Eldén L. Solving the sideways heat equation by a method of lines. ASME J Heat Transf. 1997;119:406–412.
  • Eldén L, Berntsson F, Reginska T. Wavelet and fourier methods for solving the sideways heat equation. SIAM J Sci Comput. 2000;21(6):2187–2205.
  • Amirfakhrian M, Arghand M, Kansa EJ. A new approximate method for an inverse time-dependent heat source problem using fundamental solutions and RBFs. Eng Anal Bound Elem. 2016;64:278–289.
  • Yan L, Fu C-L, Yang F-L. The method of fundamental solutions for the inverse heat problem. Eng Anal Bound Elem. 2008;32:216–222.
  • Liu C-S. Lie-group differential algebraic equations method to recover heat source in a cauchy problem with analytic continuation data. Int J Heat Mass Transf. 2014;78:538–547.
  • Liu C-S, Kuo C-L, Jhao W-S. The multiple-scale polynomial trefftz method for solving inverse heat conduction problems. Int J Heat Mass Transf. 2016;95:936–943.
  • Kuo C-L, Liu C-S, Chang J-R. The modified polynomial expansion method for identifying the time dependent heat source in two-dimensional heat conduction problems. Int J Heat Mass Transf. 2016;92:658–664.
  • Yeih W, Liu C-S. A three-point BVP of time dependent inverse heat source problems and solving by a TSLGSM. Comput Model Eng Sci. 2009;46:107–127.
  • Cannon JR. A priori estimate for continuation of the solution of the heat equation in the space variable. Annali Di Matematica Pura Ed Applicata. 1964;65(1):377–387.
  • Burggraf OR. An exact solution of the inverse problem in heat conduction theory and applications. J Heat Transfer. 1964;86(3):373–380.
  • Beck JV. Nonlinear estimation applied to the nonlinear inverse heat conduction problem. Int J Heat Mass Transf. 1970;3:703–716.
  • Siraj-ul-Islam X, Ismail S. Meshless collocation procedures for time-dependent inverse heat problems. Int J Heat Mass Transf. 2017;113:1152–1167.
  • Shidfar A, Darooghehgimofrad Z. A numerical algorithm based on RBFs for solving an inverse source problem. Bull Malays Math Sci Soc. 2016;40:1–10.
  • Johansson T, Lesnic D. Determination of a spacewise dependent heat source. J Comput Appl Math. 2007;209(1):66–80.
  • Liu C-S. An iterative algorithm for identifying heat source by using a DQ and a Lie-group method. Inverse Probl Sci Eng. 2015;23(1):67–92.
  • Wei T, Wang J. Simultaneous determination for a space-dependent heat source and the initial data by the MFS. Eng Anal Bound Elem. 2012;36(12):1848–1855.
  • Ahmadabadi M, Arab M, Ghaini F. The method of fundamental solutions for the inverse space-dependent heat source problem. Eng Anal Bound Elem. 2009;33(10):1231–1235.
  • Jin Q, Wang W. Analysis of the iteratively regularized Gauss–Newton method under a heuristic rule. Inverse Probl. 2018;34(3):1–24.
  • Jin Q. On a heuristic stopping rule for the regularization of inverse problems by the augmented Lagrangian method. Numerische Mathematik. 2017;136(4):973–992.
  • Jin Q, Lu X. A fast nonstationary iterative method with convex penalty for inverse problems in Hilbert spaces. Inverse Probl. 2014;30(4):1–21.
  • Nguyen HT, Tran TB, Vo AK, et al. On an inverse problem in the parabolic equation arising from groundwater pollution problem. Bound Value Probl. 2015;2015(1):1–23.
  • Hasanov A. Identification of spacewise and time dependent source terms in 1d heat conduction equation from temperature measurement at a final time. Int J Heat Mass Transf. 2012;55(7–8):2069–2080.
  • Cannon J, DuChateau P. Structural identification of an unknown source term in a heat equation. Inverse Probl. 1998;14(3):535–551.
  • Siraj-ul-Islam, Ahsan M, Hussian I. A multi-resolution collocation procedure for time-dependent inverse heat problems. Int J Therm Sci. 2018;128:160–174.
  • Ahsan M, Siraj-ul-Islam, Hussain I. Haar wavelets multi-resolution collocation analysis of unsteady inverse heat problems. Inverse Probl Sci Eng. 2018;27:1–23.
  • Huntul M, Lesnic D. An inverse problem of finding the time-dependent thermal conductivity from boundary data. Int Commun Heat Mass Transf. 2017;85:147–154.
  • Liu C-S. To recover heat source G (x)+ H (t) by using the homogenized function and solving rectangular differencing equations. Numer Heat Transf B Fundam. 2016;69(4):351–363.
  • Wang F, Fan C, Hua Q, et al. Localized MFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations. Appl Math Comput. 2020;364:124658.
  • Wang F, Hua Q, Liu C. Boundary function method for inverse geometry problem in two-dimensional anisotropic heat conduction equation. Appl Math Lett. 2018;84:130–136.
  • Wang C, Wang F, Gong Y. Analysis of 2D heat conduction in nonlinear functionally graded materials using a local semi-analytical meshless method. AIMS Math. 2021;6(11):12599–12618.
  • Díaz L, Martín M, Vampa V. Daubechies wavelet beam and plate finite elements. Finite Elem Anal Des. 2009;45(3):200–209.
  • Liu Y, Liu Y, Cen Z. Daubechies wavelet meshless method for 2-D elastic problems. Tsinghua Sci Technol. 2008;13(5):605–608.
  • Zaheer-ud-Din, Ahsan M, Ahmad M, et al. Meshless analysis of nonlocal boundary value problems in anisotropic and inhomogeneous media. Mathematics. 2020;8(11):2045.
  • Siraj-ul-Islam, Aziz I, Al-Fhaid A. An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders. J Comput Appl Math. 2014;260:449–469.
  • Ahsan M, Ahmad I, Ahmad M, et al. A numerical Haar wavelet-finite difference hybrid method for linear and non-linear Schrödinger equation. Math Comput Simul. 2019;165:13–25.
  • Liu X, Ahsan M, Ahmad M, et al. Haar wavelets multi-resolution collocation procedures for two-dimensional nonlinear Schrödinger equation. Alexandria Eng J. 2021;60(3):3057–3071.
  • Nazir S, Shahzad S, Wirza R, et al. Birthmark based identification of software piracy using Haar wavelet. Math Comput Simul. 2019;166:144–154.
  • Jang G-W, Kim Y, Choi K. Remesh-free shape optimization using the wavelet-galerkin method. Int J Solids Struct. 2004;41(22):6465–6483.
  • Dahmen W, Kurdila A, Oswald P. Multiscale wavelet methods for partial differential equations. Vol. 6. San Diego: Academic Press; 1997.
  • Maleknejad K, Mirzaee F. Using rationalized Haar wavelet for solving linear integral equations. Appl Math Comput. 2005;160(2):579–587.
  • Lepik Ü. Haar wavelet method for nonlinear integro-differential equations. Appl Math Comput. 2006;176(1):324–333.
  • Lepik Ü. Numerical solution of evolution equations by the Haar wavelet method. Appl Math Comput. 2007;185(1):695–704.
  • Hsiao C, Wang W-J. Haar wavelet approach to nonlinear stiff systems. Math Comput Simul. 2001;57(6):347–353.
  • Hsiao C. Haar wavelet approach to linear stiff systems. Math Comput Simul. 2004;64(5):561–567.
  • Reddy A, Manjula S, Sateesha C, et al. Haar wavelet approach for the solution of seventh order ordinary differential equations. Math Model Eng Probl. 2016;3:108–114.
  • Shah F, Abass R, Iqbal J. Numerical solution of singularly perturbed problems using Haar wavelet collocation method. Cogent Math. 2016;3(1):1202504.
  • Lepik Ü, Hein H. Application of the Haar wavelet method for solution the problems of mathematical calculus. Waves Wavelets Fractals. 2015;1(1):1–16.
  • Kirs M, Mikola M, Haavajõe A, et al. Haar wavelet method for vibration analysis of nanobeams. Waves Wavelets Fractals. 2016;2(1):20–28.
  • Shah F, Abass R. An operational Haar wavelet collocation method for solving singularly perturbed boundary-value problems. SeMA J. 2016;74:1–18.
  • Aziz I, Amin R. Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet. Appl Math Model. 2016;40(23):10286–10299.
  • Aziz I, Siraj-ul-Islam, Khan F. A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations. J Comput Appl Math. 2014;272:70–80.
  • Siraj-ul-Islam, Aziz I, Haq F. A comparative study of numerical integration based on Haar wavelets and hybrid functions. Comput Math Appl. 2010;59(6):2026–2036.
  • Siraj-ul-Islam, Šarler B, Aziz I. Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems. Int J Therm Sci. 2011;50(5):686–697.
  • Siraj-ul-islam, Aziz I, Šarler B. Wavelets collocation methods for the numerical solution of elliptic BV problems. Appl Math Model. 2013;37(3):676–694.
  • Jiwari R. A Haar wavelet quasilinearization approach for numerical simulation of Burgers equation. Comput Phys Commun. 2012;183(11):2413–2423.
  • Pandit S, Jiwari R, Bedi K, et al. Haar wavelets operational matrix based algorithm for computational modelling of hyperbolic type wave equations. Eng Comput (Swansea). 2017;34(8):2793–2814.
  • Siraj-ul-Islam, Aziz I, Ahmad M. Numerical solution of two-dimensional elliptic PDEs with nonlocal boundary conditions. Comput Math Appl. 2015;69(3):180–205.
  • Oruç Ö, Bulut F, Esen A. A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers equation. J Math Chem. 2015;53(7):1592–1607.
  • Oruç Ö, Alaattin E, Bulut F. Numerical investigation of dynamic Euler-Bernoulli equation via 3-Scale Haar wavelet collocation method. Hacettepe J Math Stat. 2021;50(1):1–21.
  • Esen A, Bulut F, Oruç Ö. A unified approach for the numerical solution of time fractional Burgers type equations. Eur Phys J Plus. 2016;131(4):1–13.
  • Oruç Ö. A non-uniform Haar wavelet method for numerically solving two-dimensional convection-dominated equations and two-dimensional near singular elliptic equations. Comput Math Appl. 2019;77(7):1799–1820.
  • Oruç Ö, Bulut F, Esen A. A numerical treatment based on Haar wavelets for coupled KdV equation. Int J Optim Control Theor Appl. 2017;7(2):195–204.
  • Oruç Ö, Esen A, Bulut F. A Haar wavelet approximation for two-dimensional time fractional reaction–subdiffusion equation. Eng Comput. 2019;35(1):75–86.
  • Oruç Ö, Bulut F, Esen A. Numerical solutions of regularized long wave equation by Haar wavelet method. Medit J Math. 2016;13(5):3235–3253.
  • Pourgholi R, Tavallaie N, Foadian S. Applications of Haar basis method for solving some ill-posed inverse problems. J Math Chem. 2012;50(8):2317–2337.
  • Pourgholi R, Foadian S, Esfahani A. Haar basis method to solve some inverse problems for two-dimensional parabolic and hyperbolic equations. TWMS J Appl Eng Math. 2013;3(1):10–32.
  • Ahsan M, Lin S, Ahmad M, et al. A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation. Open Phys. 2021;19(1):722–734.
  • Siraj-ul-Islam,   Haq S, Ali A. A meshfree method for the numerical solution of the RLW equation. J Comput Appl Math. 2009;223(2):997–1012.
  • Mokhtari R, Mohammadi M. Numerical solution of GRLW equation using Sinc-collocation method. Comput Phys Commun. 2010;181(7):1266–1274.
  • Liu X, Ahsan M, Ahmad M, et al. Applications of Haar wavelet-finite difference hybrid method and its convergence for hyperbolic nonlinear Schrödinger equation with energy and mass conversionn. Energies. 2021;14(23):1–17. Available from: https://www.mdpi.com/1996–1073/14/23/7831
  • Majak J, Shvartsman B, Kirs M, et al. Convergence theorem for the Haar wavelet based discretization method. Compos Struct. 2015;126:227–232.