1,045
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A method for determining the parameters in a rheological model for viscoelastic materials by minimizing Tikhonov functionals

, , , , , & show all
Pages 141-165 | Received 26 Feb 2021, Accepted 04 Jan 2022, Published online: 03 Feb 2022

References

  • Hartmann S, Neff P. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int J Solids Struct. 2003;40(11):2767–2791.
  • Woestehoff A, Schuster T. Uniqueness and stability result for Cauchy's equation of motion for a certain class of hyperelastic materials. Appl Anal. 2015;94(8):1561–1593.
  • Binder F, Schöpfer F, Schuster T. Defect localization in fibre-reinforced composites by computing external volume forces from surface sensor measurements. Inverse Probl. 2015;31(2):025006.
  • Seydel J, Schuster T. On the linearization of identifying the stored energy function of a hyperelastic material from full knowledge of the displacement field. Math Methods Appl Sci. 2017;40(1):183–204.
  • Seydel J, Schuster T. Identifying the stored energy of a hyperelastic structure by using an attenuated Landweber method. Inverse Probl. 2017;33(12):124004.
  • Klein R, Schuster T, Wald A. Sequential subspace optimization for recovering stored energy functions in hyperelastic materials from time-dependent data. In: Kaltenbacher B, Schuster T, Wald A, editors. Time-dependent problems in imaging and parameter identification. Berlin: Springer; 2021. p. 165–190.
  • Rothermel D, Schuster T. Solving an inverse heat convection problem with an implicit forward operator by using a projected Quasi-Newton method. Inverse Problems. 2021.37:045014
  • Rothermel D, Schuster T, Schorr R et al.. Parameter estimation of temperature dependent material parameters in the cooling process of TMCP steel plates. Mathematical Problems in Engineering. 2021.https://doi.org/10.1155/2021/6653388.
  • Colton DL, Kress R. Inverse acoustic and electromagnetic scattering theory. Berlin: Springer; 1998.
  • Wald A, Schuster T. Terahertz tomographic imaging using sequential subspace optimization. In: Hofmann B, Leitao A, Zubelli JP, editors. New trends in parameter identification for mathematical models. Basel: Birkhäuser; 2018. (Trends in Mathematics).
  • Chen Z, Scheffer T, Seibert H, et al. Macroindentation of a soft polymer: identification of hyperelasticity and validation by uni/biaxial tensile tests. Mech Mater. Sep 2013;64:117–127.
  • Heinze S, Bleistein T, Düster A, et al. Experimental and numerical investigation of single pores for identification of effective metal foams properties. ZAMM – J Appl Math Mechs / Z Ange Math Mech. 2018;98(5):682–695.
  • Gavrus A, Massoni E, Chenot JL. An inverse analysis using a finite element model for identification of rheological parameters. J Mater Processing Technol. 1996;60(1–4):447–454.
  • Hartmann S. Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int J Solids Struct. 2001;38(44–45):7999–8018.
  • Hartmann S. Numerical studies on the identification of the material parameters of Rivlin's hyperelasticity using tension-torsion tests. Acta Mech. 2001;148(1):129–155.
  • Mahnken R, Stein E. A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput Methods Appl Mech Eng. 1996;136(3–4):225–258.
  • Scheffer T, Seibert H, Diebels S. Optimisation of a pretreatment method to reach the basic elasticity of filled rubber materials. Arch Appl Mech. Nov 2013;83(11):1659–1678.
  • Bonfanti A, Kaplan JL, Charras G, et al. Fractional viscoelastic models for power-law materials. Soft Matter. 2020;16(26):6002–6020.
  • Jalocha D. Payne effect: a constitutive model based on a dynamic strain amplitude dependent spectrum of relaxation time. Mech Mater. 2020;148:103526.
  • Sharma P, Sambale A, Stommel M, et al. Moisture transport in PA6 and its influence on the mechanical properties. Continuum Mech Thermodyn. 2020;32(2):307–325.
  • Tschoegl NW. The phenomenological theory of linear viscoelastic behavior. Heidelberg: Springer; 1989.
  • Wineman AS, Rajagopal KR. Mechanical response of polymers: an introduction. Cambridge, UK: Cambridge University Press; 2000.
  • Diebels S, Scheffer T, Schuster T, et al. Identifying elastic and viscoelastic material parameters by means of a Tikhonov regularization. Math Probl Eng. Feb 2018;2018:1–11.
  • Fernanda M, Costa P, Ribeiro C. Parameter estimation of viscoelastic materials: a test case with different optimization strategies. International Conference on Numerical Analysis and Applied Mathematics (ICNAAM), AIP Conf. Proc.; Vol. 1389, 2011. p. 771–774.
  • Shukla K, Chan J, de Hoop MV. A high order discontinuous Galerkin method for the symmetric form of the anisotropic viscoelastic wave equation. 2020. Available from: arXiv:2011.01529v1.
  • Park SW, Schapery R. Methods of interconversion between linear viscoelastic material functions. part I – a numerical method based on Prony series. Int J Solids Struct. 1999;36:1653–1675.
  • Emri I, Tschoegl NW. An iterative computer algorithm for generating line spectra from linear viscoelastic response functions. Int J Polymeric Mater Polymeric Biomater. 1998;40:55–79.
  • Engl HW, Hanke M, Neubauer A. Regularization of inverse problems. Vol. 375. Netherlands: Springer Science & Business Media; 2000.
  • Louis AK. Inverse und schlecht gestellte probleme. Berlin: Springer-Verlag; 2013.
  • Rieder A. Keine Probleme mit inversen Problemen: eine Einführung in ihre stabile Lösung. Berlin: Springer-Verlag; 2013.
  • Kirsch A. An introduction to the mathematical theory of inverse problems. Berlin: Springer; 2011.
  • Kaltenbacher B, Neubauer A, Scherzer O. Iterative regularization methods for nonlinear ill-posed problems. Vol. 6. Germany: Walter de Gruyter; 2008.
  • Wald A, Schuster T. Sequential subspace optimization for nonlinear inverse problems. J Inv Ill-posed Problems. 2017;25(1):99–117.
  • Wald A. A fast subspace optimization method for nonlinear inverse problems in Banach spaces with an application in parameter identification. Inverse Probl. 2018;34(8):085008.
  • Provencher SW. CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun. 1982;27:229–242.
  • Goldschmidt F, Diebels S. Modelling and numerical investigations of the mechanical behavior of polyurethane under the influence of moisture. Arch Appl Mech. 2015;85(8):1035–1042.
  • Johlitz M, Steeb H, Diebels S, et al. Experimental and theoretical investigation of nonlinear viscoelastic polyurethane systems. J Mater Sci. 2007. 42(23)9894–9904.
  • Baurngaertel M, De Rosa ME, Machado J, et al. The relaxation time spectrum of nearly monodisperse polybutadiene melts. Rheol Acta. 1992;31(1):75–82.
  • Berry GC, Fox TG. The viscosity of polymers and their concentrated solutions. Fortschritte der Hochpolymeren-Forschung. Berlin: Springer; 1968. p. 261–357.
  • Johlitz M, Lion A. Chemo-thermomechanical ageing of elastomers based on multiphase continuum mechanics. Continuum Mech Thermodyn. 2013;25(5):605–624.
  • Reese S, Govindjee S. A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct. 1998;35(26–27):3455–3482.
  • Croft LR, Goodwill PW, Conolly SM. Relaxation in x-space magnetic particle imaging. IEEE Trans Med Imaging. 2012;31(12):2335–2342.
  • Colton D, Kress R. Inverse acoustic and electromagnetic scattering theory. Berlin: Springer; 1992.
  • Goldschmidt F, Diebels S. Modeling the moisture and temperature dependent material behavior of adhesive bonds. PAMM. 2015;15(1):295–296.
  • Inc MathWorks. MATLAB: the language of technical computing. Desktop tools and development environment. version 7. Vol. 9, MathWorks; 2005.
  • Engl HW, Kunisch K, Neubauer A. Convergence rates for Tikhonov regularisation of non-linear ill-posed problems. Inverse Probl. 1989;5(4):523–540.
  • Neubauer A. Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales. Appl Anal. 1992;46(1–2):59–72.
  • Scherzer O. The use of Morozov's discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems. Computing. 1993;51(1):45–60.