233
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A novel method for the synthesis of Fe3O4 nanoparticles/CdS nanowires heterostructure nanocomposite and uses in photodegradation of methylene blue

, , , &
Pages 279-289 | Received 23 May 2013, Accepted 03 Nov 2013, Published online: 03 Dec 2013

References

  • Steigerwald ML, Brus LE. Semiconductor crystallites: a class of large molecules. Acc Chem Res. 1990;23:183–188. doi: 10.1021/ar00174a003
  • Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933–937. doi: 10.1126/science.271.5251.933
  • Weller H. Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew Chem Int Ed Engl. 1993;32:41–53.
  • Eychmuller A. Structure and photophysics of semiconductor nanocrystals. J Phys Chem B. 2000;104:6514–6518. doi: 10.1021/jp9943676
  • Green M, O'Brien P. Semiconductors as isolated nanometric particles: new routes to quantum dots. Chem Commun. 1999:2235–2341. doi: 10.1039/a904202d
  • Jung D-R, Kim J, Nahm C, Choi H, Nam S, Park B. Semiconductor nanoparticles with surface passivation and surface plasmon. Electron Mater Lett. 2011;7:185–194. doi: 10.1007/s13391-011-0902-4
  • Pal B, Torimoto T, Okazaki K, Ohtani B. Photocatalytic syntheses of azoxybenzene by visible light irradiation of silica-coated cadmium sulfide nanocomposites. Chem Commun. 2007;43:483–485. doi: 10.1039/b616178b
  • Wang L, Wei H, Fan Y, Gu X, Zhan J. One-dimensional CdS/α-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity. J Phys Chem C. 2009;113:14119–14125. doi: 10.1021/jp902866b
  • Lu X-H, Xie S-L, Zhai T, Zhao Y-F, Zhang P, Zhang Y-L, Tong Y-X. Monodisperse CeO2/CdS heterostructured spheres: one-pot synthesis and enhanced photocatalytic hydrogen activity. RSC Adv. 2011;1:1207–1210. doi: 10.1039/c1ra00252j
  • Jothi NSN, Gunaseelan R, Raj TM, Sagayaraj P. Investigation on mild condition preparation and structural, optical and thermal properties of PVP capped CdS nanoparticles. Arch Appl Sci Res. 2012;4:1723–1730.
  • Zong X, Wu GP, Yan HJ, Ma GJ, Shi JY, Wen FY, Wang L, Li C. Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. J Phys Chem C. 2010;114:1963–1968. doi: 10.1021/jp904350e
  • Wang XW, Liu G, Chen ZG, Li F, Wang LZ, Lu GQ, Cheng HM. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem Commun. 2009:3452–3454. doi: 10.1039/b904668b
  • Strataki N, Antoniadou M, Dracopoulos V, Lianos P. Visible-light photocatalytic hydrogen production from ethanol–water mixtures using a Pt–CdS–TiO2 photocatalyst. Catal Today. 2010;151:53–57. doi: 10.1016/j.cattod.2010.03.036
  • Ren XX, Zhao GL, Li H, Wu W, Han GR. The effect of different pH modifier on formation of CdS nanoparticles. J Alloys Compd. 2008;465:534–539. doi: 10.1016/j.jallcom.2007.11.001
  • Salavati-Niasari M, Ghanbari D, Davar F. Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. J Alloys Compd. 2010;492:570–575. doi: 10.1016/j.jallcom.2009.11.183
  • Xiong SL, Xi BJ, Qian YT. CdS hierarchical nanostructures with tunable morphologies: preparation and photocatalytic properties. J Phys Chem C. 2010;114:14029–14035. doi: 10.1021/jp1049588
  • Saravanan RSS, Pukazhselvan D, Mahadevan CK. Investigation on the synthesis and quantum confinement effects of pure and Mn2+ added Zn(1−x)CdxS nanocrystals. J Alloys Compd. 2011;509:4065–4072. doi: 10.1016/j.jallcom.2010.12.198
  • Zhou J, Zhao G, Yang J, Han G. Diphenylthiocarbazone (dithizone)-assisted solvothermal synthesis and optical properties of one-dimensional CdS nanostructures. J Alloys Compd. 2011;509:6731–6735. doi: 10.1016/j.jallcom.2011.03.159
  • Chen J, Xu LN, Li WY, Gou XL. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater. 2005;17:582–586. doi: 10.1002/adma.200401101
  • Zeng H, Li J, Liu JP, Wang ZL, Sun SH. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature. 2002;420:395–398. doi: 10.1038/nature01208
  • Jordan A, Scolz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater. 2001;225:118–126. doi: 10.1016/S0304-8853(00)01239-7
  • Wu RC, Qu JH, Chen YS. Magnetic powder MnO–Fe2O3 composite – a novel material for the removal of azo-dye from water. Water Res. 2005;39:630–638. doi: 10.1016/j.watres.2004.11.005
  • Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR. The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B. 2003;43:151–162. doi: 10.1016/S0926-3373(02)00297-7
  • Liu X, Hu Q, Zhang X, Fang Z, Wang Q. Generalized and facile synthesis of Fe3O4/MS (M = Zn, Cd, Hg, Pb, Co, and Ni) nanocomposites. J Phys Chem C. 2008;112:12728–12735. doi: 10.1021/jp8035617
  • Gao J, Zhang W, Huang P, Zhang B, Zhang X, Xu B. Intracellular spatial control of fluorescent magnetic nanoparticles. J Am Chem Soc. 2008;130:3710–3711. doi: 10.1021/ja7103125
  • Wang D, He J, Rosenzweig Z. Superparamagnetic Fe2O3 Beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett. 2004;4:409–413. doi: 10.1021/nl035010n
  • Li D, Haneda H. Photocatalysis of sprayed nitrogen-containing Fe2O3–ZnO and WO3–ZnO composite powders in gas-phase acetaldehyde decomposition. J Photochem Photobiology A. 2003;160:203–212. doi: 10.1016/S1010-6030(03)00212-0
  • Xuan SH, Jiang WQ, Gong XL, Hu Y, Chen ZY. magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity. J Phys Chem C. 2009;113:553–558. doi: 10.1021/jp8073859
  • Wang L, Wei H, Fan Y, Gu X, Zhan J. One-dimensional CdS/α-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity. J Phys Chem C. 2009;113:14119–14125. doi: 10.1021/jp902866b
  • Kaboudin B, Abedi Y, Yokomatsu T. CuII-β-cyclodextrin complex as a nanocatalyst for the homo- and cross-coupling of arylboronic acids under ligand- and base-free conditions in air: chemoselective cross-coupling of arylboronic acids in water. Eur J Org Chem. 2011:6656–6662. doi: 10.1002/ejoc.201100994
  • Kaboudin B, Abedi Y, Yokomatsu T. One-pot synthesis of 1,2,3-triazoles from boronic acids in water using Cu(II)-β-cyclodextrin complex as a nanocatalyst. Org Biomol Chem. 2012;10:4543–4548. doi: 10.1039/c2ob25061f
  • Kaboudin B, Haruki T, Yokomatsu T. CuSO4-mediated homocoupling of arylboronic acids under ligand- and base-free conditions in air. Synthesis. 2011:91–95. doi: 10.1055/s-0030-1258321
  • Kaboudin B, Elhamifar D. A simple, efficient, and new method has been developed for the synthesis of thioamides from nitriles. Synthesis. 2006:224–226. doi: 10.1055/s-2005-918507
  • Kaboudin B, Elhamifar D, Farjadian F. A new, efficient and simple method for the synthesis of thioamides from nitriles. Org Prep Proced Int. 2006;38:412–417. doi: 10.1080/00304940609356003
  • Kaboudin B, Malekzadeh L. Ammonium phosphorodithioate: a mild, easily handled, efficient, and air-stable reagent for the conversion of amides into thioamides. Synlett. 2011:2807–2810. doi: 10.1055/s-0031-1289859
  • Ivanov AV, Loseva OV, Ivanov MA, Konfedeartov VA, Gerasimenko AV, Antzutkin ON, Forsling W. Crystalline cadmium dialkyl phosphorodithioate complexes: synthesis and structural organization as probed by multinuclear 13C, 31P, and 113Cd CP/MAS NMR and single-crystal X-ray diffraction. Zhurnal Neorganicheskoi khimii. 2007;52: 1697–1704. Chem Abstr. 2007;150:274220.
  • Bond AM, Colton R, Traeger JC, Harvey J. Phosphine derivatives of mercury and cadmium dithiolates: an electrospray mass spectrometric study. Inorg Chim Acta. 1995;228:193–197. doi: 10.1016/0020-1693(94)04164-Q
  • Tian J, Jin J, Zhang F, Zhao H. self-assembly of gold nanoparticles and polystyrene: a highly versatile approach to the preparation of colloidal particles with polystyrene cores and gold nanoparticle coronae. Langmuir. 2010;26: 8762–8768. doi: 10.1021/la904519j
  • Ozturk A, Ertas E, Mert O. A berzelius reagent, phosphorus decasulfide (P4S10), in organic syntheses. Chem Rev. 2010;110:3419–3478. doi: 10.1021/cr900243d
  • Resch U, Eychmuller A, Haase M, Weller H. Absorption and fluorescence behavior of redispersible cadmium sulfide colloids in various organic solvents. Langmuir. 1992;8:2215–2218. doi: 10.1021/la00045a024
  • Herro N, Wang Y, Eckert H. Synthesis and characterization of surface-capped, size-quantized cadmium sulfide clusters. Chemical control of cluster size. J Am Chem Soc. 1990;112:1322–1326. doi: 10.1021/ja00160a004
  • Li F, Bi W, Kong T, Wang C, Li Z, Huang X. Crystal structure, morphology and luminescence of CdS nanocrystals prepared by a solvothermal method. J Alloys Compd. 2009;479:707–710. doi: 10.1016/j.jallcom.2009.01.034
  • Upadhyay RK, Sharma M, Singh DK, Amritphate SS, Chandra N. Photo degradation of synthetic dyes using cadmium sulfide nanoparticles synthesized in the presence of different capping agents. Sep Purif Technol. 2012;88:39–45. doi: 10.1016/j.seppur.2011.11.040
  • Liu Y, Zhou L, Hu Y, Guo C, Qian H, Zhang F, Luo DW. Magnetic-field induced formation of 1D Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment. J Mater Chem. 2011;21: 18359–18364. doi: 10.1039/c1jm13789a
  • Hu Y, Liu Y, Qian H, Li Z, Chen J. Coating colloidal carbon spheres with CdS nanoparticles: microwave-assisted synthesis and enhanced photocatalytic activity. Langmuir. 2010;26:18570–18575. doi: 10.1021/la103191y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.