168
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A comparison of the C‒H bond dissociation enthalpies of sulfur-containing fused heterocyclic compounds to the C‒H bond dissociation enthalpies in other heterocycles

&
Pages 155-169 | Received 25 Sep 2014, Accepted 03 Dec 2014, Published online: 02 Jan 2015

References

  • Liu SQ, Brown CW, Berlin KD, Dhar A, Guruswamy S, Brown D, Gardner GJ, Birrer MJ, Benbrook DM. Synthesis of flexible sulfur-containing heteroarotinoids that induce apoptosis and reactive oxygen species with discrimination between malignant and benign cells. J Med Chem. 2004;47:999–1007. doi: 10.1021/jm030346v
  • Nosova EV, Lipunova GN, Charushin VN, Chupakhin ON. Fluorinated azines and benzazines containing oxygen or sulfur atoms. J Fluorine Chem. 2010;131:1267–1288. doi: 10.1016/j.jfluchem.2010.09.007
  • Messaoudi S, Brion J-D, Alami M. Transition-metal-catalyzed direct C‒H alkenylation, alkynylation, benzylation, and alkylation of (hetero)arenes. Eur J Org Chem. 2010;2010:6495–6516. doi: 10.1002/ejoc.201000928
  • Tang DTD, Collins KD, Glorius F. Completely regioselective direct C‒H functionalization of benzo[b]thiophenes using a simple heterogeneous catalyst. J Am Chem Soc. 2013;135:7450–7453. doi: 10.1021/ja403130g
  • Liger F, Pellet-Rostaing S, Popowycz F, Lemaire M. Bromination of 3-substituted benzo[b]thiophenes: access to raloxifen intermediate. Tetrahedron Lett. 2011;52:3736–3739. doi: 10.1016/j.tetlet.2011.05.043
  • Cho CH, Neuenswander B, Larock RC. Diverse methyl sulfone-containing benzo[b]thiophene library via iodocyclization and palladium-catalyzed coupling. J Comb Chem. 2010;12:278–285. doi: 10.1021/cc900172u
  • Inomata H, Toh A, Mitsui T, Fukuzawa SI. N-heterocyclic carbene copper(I) complex-catalyzed direct C‒H thiolation of benzothiazoles. Tetrahedron Lett. 2013;54:4729–4731. doi: 10.1016/j.tetlet.2013.06.104
  • Feng Y, Liu L, Wang JT, Huang H, Guo QX. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies. J Chem Inf Comput Sci. 2003;43:2005–2013. doi: 10.1021/ci034033k
  • Feng Y, Liu L, Wang JT, Zhao SW, Guo QX. Homolytic C‒H and N–H bond dissociation energies of strained organic compounds. J Org Chem. 2004;69:3129–3138. doi: 10.1021/jo035306d
  • Zhao SW, Liu L, Fu Y, Guo QX. Assessment of the metabolic stability of the methyl groups in heterocyclic compounds using C‒H bond dissociation energies: effects of diverse aromatic groups on the stability of methyl radicals. J Phys Org Chem. 2005;18:353–367. doi: 10.1002/poc.856
  • Lu QQ, Yu HZ, Fu Y. Linear correlation between the C‒H activation barrier and the C–Cu/C‒H bond dissociation energy gap in Cu-promoted C‒H activation of heteroarenes. Chem Commun. 2013;49:10847–10849. doi: 10.1039/c3cc46069j
  • Auzmendi-Murua I, Charaya S, Bozzelli JW. Thermochemical properties of methyl-substituted cyclic alkyl ethers and radicals for oxiranes, oxetanes, and oxolanes: C‒H bond dissociation enthalpy trends with ring size and ether site. J Phys Chem A. 2013;117:378–392. doi: 10.1021/jp309775h
  • Wen Z, Li ZC, Shang ZF, Cheng JP. On the direction and magnitude of radical substituent effects:  the role of polar interaction on thermodynamic stabilities of benzylic C‒H bonds and related carbon radicals. J Org Chem. 2001;66:1466–1472. doi: 10.1021/jo001668z
  • Blanksby SJ, Ellison GB. Bond dissociation energies of organic molecules. Acc Chem Res. 2003;36:255–263. doi: 10.1021/ar020230d
  • Fu Y, Mou Y, Lin BL, Liu L, Guo QX. Structures of the X–Y–NO molecules and homolytic dissociation energies of the Y–NO bonds (Y‒C, N, O, S). J Phys Chem A. 2002;106:12386–12392. doi: 10.1021/jp0217029
  • Curtiss LA, Redfern PC, Raghavachari K. Gaussian-4 theory. J Chem Phys. 2007;126:084108–084120. doi: 10.1063/1.2436888
  • Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys. 1999;110:2822–2827. doi: 10.1063/1.477924
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785
  • Zheng WR, Guo ZL, Chen ZC, Yang Q, Huang T. S‒O homolytic bond dissociation enthalpies in sulfoxides. Res Chem Intermed. 2012;38:1791–1806. doi: 10.1007/s11164-012-0503-3
  • Modelli A, Mussoni L, Fabbri D. Electron affinities of polycyclic aromatic hydrocarbons by means of B3LYP/6-31+G* calculations. J Phys Chem A. 2006;110:6482–6486. doi: 10.1021/jp0605911
  • Fu Y, Liu L, Yu H-Z, Wang Y-M, Guo Q-X. Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile. J Am Chem Soc. 2005;127:7227–7234. doi: 10.1021/ja0421856
  • Shi J, Huang X-Y, Wang J-P, Li R. A theoretical study on C–COOH homolytic bond dissociation enthalpies. J Phys Chem A. 2010;114:6263–6272. doi: 10.1021/jp910498y
  • Boese AD, Martin JML. Development of density functionals for thermochemical kinetics. J Chem Phys B. 2004;8:3405–3416. doi: 10.1063/1.1774975
  • Kang JK, Musgrave CB. Prediction of transition state barriers and enthalpies of reaction by a new hybrid density-functional approximation. J Chem Phys. 2001;115:11040–11051. doi: 10.1063/1.1415079
  • Benjamin JL, Patton LF, Maegan H, Donald GT. Adiabatic connection for kinetics. Phys Chem A. 2012;104:4812–4815.
  • Hoe WM, Cohen AJ, Handy NC. Assessment of a new local exchange functional OPTX. Chem Phys Lett. 2001;341:319–328. doi: 10.1016/S0009-2614(01)00581-4
  • Perdew JP, Berke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Zhao Y, Lynch BJ, Truhlar, DG. Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics. Phys Chem Chem Phys. 2005;7:43–52. doi: 10.1039/b416937a
  • Zhao Y, Schultz NE, Truhlar DG. Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys. 2005;123:161103–161106. doi: 10.1063/1.2126975
  • Zhao Y, Truhlar, DG. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions:  the MPW1B95 and MPWB1 K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A. 2004;108:6908–6918. doi: 10.1021/jp048147q
  • Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Acc Chem Res. 2008;41:157–167. doi: 10.1021/ar700111a
  • Zhao Y, Truhlar DG. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys. 2006;125:194101–194118. doi: 10.1063/1.2370993
  • Dahlke EE, Truhlar DG. Improved density functionals for water. J Phys Chem B. 2005;109:15677–15683. doi: 10.1021/jp052436c
  • Chai JD, Head-Gordon M. Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys. 2008;128:084106–084120. doi: 10.1063/1.2834918
  • Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098
  • Lee C, Yang W, Parr RG. Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785
  • Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x
  • Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1998;88:899–926. doi: 10.1021/cr00088a005
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL , Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision. A.1. Wallingford, CT: Gaussian Inc.; 2009.
  • Luo YR. Comprehensive handbook of chemical bond energies. Boca Raton, FL: CRC Press; 2007.
  • Kruse H, Goerigk L, Grimme S. Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. J Org Chem. 2012;77:10824–10834. doi: 10.1021/jo302156p
  • Sarish SP, Nembenna S, Nagendran S, Roesky HW. Chemistry of soluble β-diketiminatoalkaline-earth metal complexes with M–X bonds (M‒Mg, Ca, Sr; X‒OH, halides, H). Acc Chem Res. 2008;41:157–170. doi: 10.1021/ar700111a
  • Segovia ME, Irving K, Ventura ON. Density functional and chemical model study of the competition between methyl and hydrogen scission of propane and β-scission of the propyl radical. Theor Chem Acc. 2013;132:1301–1319. doi: 10.1007/s00214-012-1301-0
  • Chéron N, Ramozzi R, Kaïm LE, Grimaud L, Fleurat-Lessard P. Substituent effects in ugi-smiles reactions. J Phys Chem A. 2013;117:8035–8042. doi: 10.1021/jp4052227
  • Mbiya W, Chipinda I, Siegel PD, Mhike M, Simoyi RH. Substituent effects on the reactivity of benzoquinone derivatives with thiols. Chem Res Toxicol. 2013;26:112–123. doi: 10.1021/tx300417z
  • Menon AS, Henry DJ, Bally T, Radom L. Effect of substituents on the stabilities of multiply-substituted carbon-centered radicals. Org Biomol Chem. 2011;9:3636–3657. doi: 10.1039/c1ob05196b
  • Chattaraj PK, González-Rivas N, Matus MH, Galván M. Substituent effects. J Phys Chem A. 2005;109:5602–5607. doi: 10.1021/jp045319a
  • Mó O, Yáñez M, Elguero J, Roux MV, Jiménez P, Dávalos JZ, Ribeiro da Silva MAV, Maria das Dores MC, Ribeiro da Silva MDMC, Cabildo P, Claramunt R. Substituent effects on enthalpies of formation: benzene derivatives. J Phys Chem A. 2003;107:366–371. doi: 10.1021/jp0265790
  • Liu L, Fu Y, Liu R, Li R-Q, Guo Q-X. Hammett equation and generalized Pauling's electronegativity equation. J Chem Inf Comput Sci. 2004;44:652–657. doi: 10.1021/ci0342122
  • Yu YY, Fu Y, Liu L, Guo QX. Theoretical study of remote substituent effects on X–H (X‒CH2, NH, O) bond dissociation energies of azulene. Chin J Chem. 2007;25:1014–1022. doi: 10.1002/cjoc.200790162
  • Zheng WR, Xu WX, Wang YX, Chen ZC. The theoretical assessment and prediction of C–Br bond dissociation enthalpies. Comput Theor Chem. 2014;1027:116–124. doi: 10.1016/j.comptc.2013.11.012
  • Song KS, Liu L, Guo QX. Effects of α-ammonium, α-phosphonium, and α-sulfonium groups on C‒H bond dissociation energies. J Org Chem. 2003;68:4604–4607. doi: 10.1021/jo020709j

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.