179
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Determination of the promoting effect of nano SiO2 and H3PO4@nano SiO2 in the thiocyanation of N-containing aromatic compounds under solvent-free conditions

&
Pages 178-186 | Received 10 Oct 2014, Accepted 31 Dec 2014, Published online: 29 Jan 2015

References

  • Wood JL. Organic reactions. Vol. 3. New York: Wiley; 1967. p. 240–266.
  • Kelly TR, Kim MH, Curtis ADM. Structure correction and synthesis of the naturally occurring benzothiazinone BMY 40662. J Org Chem. 1993;58:5855–5857. doi: 10.1021/jo00073a057
  • Mackinnon DL, Farrel PA. The effect of 2-(Thiocyanomethylthio)benzothiazole on juvenile Coho salmon (Oncorhynchus Kisutch): sublethal toxicity testing. Environ Toxicol Chem. 1992;11:1541–1548. doi: 10.1002/etc.5620111104
  • Mehta RG, Liu J, Constantinou A, Thomas CF, Hawthorne M, You M, Gerhäuser C, Pezzuto JM, Moon RC, Moriarty RM. Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage. Carsinogenesis. 1995;16:399–404. doi: 10.1093/carcin/16.2.399
  • Gray T. The element: a visual exploration of every known atom in the universe. New York: Black Dog & Leventhal; 2009.
  • Wu G, Liu Q, Shen Y, Wu W, Wu L. Regioselective thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and oxone. Tetrahedron Lett. 2005;46:5831–5834. doi: 10.1016/j.tetlet.2005.06.132
  • Toste FD, Stefano VD, Still IWJ. Thiocyanate as a versatile synthetic unit: efficient conversion of ArSCN to aryl alkyl sulfides and aryl thioesters. Synth Commun. 1995;5:1277–1286.
  • Yadav J-S, Reddy BVS, Krishna AD, Reddy ChS, Narsaish A. Ferric(III) chloride promoted electrophilic thiocyanation of aromatic and heteroaromatic compounds. Synthesis. 2005;36:961–964. doi: 10.1055/s-2005-861852
  • Nair V, George TG, Nair LG, Panicker SB. A direct synthesis of aryl thiocyanates using cerium(IV) ammonium nitrate. Tetrahedron Lett. 1999;40:1195–1196. doi: 10.1016/S0040-4039(98)02563-5
  • Chakraberty M, Sarkar S. A clay-mediated eco-friendly thiocyanation of indoles and carbazoles. Tetrahedron Lett. 2003;44:8131–8133. doi: 10.1016/j.tetlet.2003.09.032
  • Wu L, Chao Sh, Wang X, Yan F. Poly[4-diacetoxyiodo] styrene-promoted thiocyanation of aromatic ethers, anilines, and indoles. Phosphorus Sulfur Silicon Relat Elem. 2011;186:304–310. doi: 10.1080/10426507.2010.496748
  • Murthy YLN, Govindh B, Diwakar BS, Nagalakshmi K, Venu R. Microwave-assisted neat reaction technology for regioselective thiocyanation of substituted anilines and indoles in solid media. J Iran Chem Soc. 2011;8:292–297. doi: 10.1007/BF03246227
  • Khazaei A, Zolfigol MA, Mokhlesi M, Derakhshan Panah F, Sajjadifar S. Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media. Helv Chim Acta. 2012;95:106–114. doi: 10.1002/hlca.201100244
  • Akhlaginia B, Pourali A-R, Rahmani M. Efficient and novel method for thiocyanation of aromatic compounds using trichloroisocyanuric acid/ammonium thiocyanate/wet SiO2. Synth Commun. 2012;42:1184–1191. doi: 10.1080/00397911.2010.537424
  • Khazaei A, Zolfigol MA, Mokhlesi M, Pirveysian M. Citric acid as a trifunctional organocatalyst for thiocyanation of aromatic and heteroaromatic compounds in aqueous media. Can J Chem. 2012;90:427–432. doi: 10.1139/v2012-013
  • Gai PL, Roper R, White MG. Recent advances in nanocatalysis research. Curr Opin Solid State Mater Sci. 2002;6:401–406. doi: 10.1016/S1359-0286(02)00109-2
  • Astruc D, Lu F, Aranzaes JR. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed. 2005;44:7852–7872. doi: 10.1002/anie.200500766
  • Lewis LN. Chemical catalysis by colloids and clusters. Chem Rev. 1993;93:2693–2730. doi: 10.1021/cr00024a006
  • Davila LP, Leppert VJ, Bringa EM. The mechanical behavior and nanostructure of silica nanowires via simulations. Scripta Mater. 2009;60:843–846. doi: 10.1016/j.scriptamat.2008.12.057
  • Sujandi S-EP. Green approaches via nanocatalysis with nanoporous materials: functionalization of mesoporous materials for single site catalysis. Current Appl Phys. 2008;8:664–668. doi: 10.1016/j.cap.2007.04.044
  • Sadeghi M, Semsarzadeh MA, Moadel H. Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. J Member Sci. 2009;331:21–30. doi: 10.1016/j.memsci.2008.12.073
  • Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Eskandari Z, Salavati H. Chemoselective synthesis of 2-aryloxazines and 2-aryltetrahydropyrimidines using nano-SiO2 as a reusable solid acid catalyst under thermal conditions and microwave irradiation. J Iran Chem Soc. 2011;8:S17–S27. doi: 10.1007/BF03254278
  • Ramazani A, Dastanra K, Zeinali Nasrabadi F, Karimi Z, Rouhani M, Hosseini M. Silica nanoparticles as a high efficient catalyst for the one-pot synthesis of 3-oxo-3-phenylpropanamid derivatives from isocyanides, phenylacetaldehyde and secondary amines. Turk J Chem. 2012;36:467–476.
  • Banerjee S, Santra S. Remarkable catalytic activity of silica nanoparticle in the bis-Michael addition of active methylene compounds to conjugated alkenes. Tetrahedron Lett. 2009;50:2037–2040. doi: 10.1016/j.tetlet.2009.01.154
  • Banerjee S, Das, J, Santra S. Native silica nanoparticle catalyzed anti-Markovnikov addition of thiols to inactivated alkenes and alkynes: a new route to linear and vinyl thioethers. Tetrahedron Lett. 2009;50:124–127. doi: 10.1016/j.tetlet.2008.10.110
  • Banerjee S, Das J, Alvarez RP, Santra S. Silica nanoparticles as a reusable catalyst: a straightforward route for the synthesis of thioethers, thioesters, vinyl thioethers and thio-Michael adducts under neutral reaction conditions. New J Chem. 2010;34:302–306. doi: 10.1039/b9nj00399a
  • Ramazani A, Mahyari A, Lashgari H, Ślepokura K, Lis T. Silica nanoparticles as a highly efficient catalyst for the one-pot synthesis of 2-hydroxyacetamide derivatives from isocyanides and electron-poor aromatic aldehydes. Helv Chim Acta. 2011;94:611–622. doi: 10.1002/hlca.201000280
  • Ramazani A, Mahyari A, Farshadi A, Rouhani M. Preparation of silica nanoparticles from organic laboratory waste of silica gel HF254 and their use as a highly efficient catalyst for the one-pot synthesis of 2,3-dihydro-1H-isoindolone derivatives. Helv Chim Acta. 2011;94:1831–1837. doi: 10.1002/hlca.201100076
  • Memaian HR, Mohammadpour-Baltork I, Nikoofar K. DDQ-promoted thiocyanation of aromatic and heteroaromatic compounds. Can J Chem. 2007;85:930–937. doi: 10.1139/v07-092
  • Memaian HR, Mohammadpor-Baltork I, Nikoofar K. Ultrasound-assisted thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and DDQ. Ultrason Sonochem. 2008;15:456–462.
  • Nikoofar K. A brief on thiocyanation of N-activated arenes and N-bearing heteroaromatic compounds. Chem Sci Trans. 2013;2:691–700.
  • Fotouhi L, Nikoofar K. Electrochemical thiocyanation of nitrogen-containing aromatic and heteroaromatic compounds. Tetrahedron Lett. 2013;54:2903–2905. doi: 10.1016/j.tetlet.2013.02.106
  • Melnikov NN, Sukhareva ND. Reactions and investigations methods of organic compounds. Moscow: Goskhimizdat; 1959. Book 8, p. 446–465.
  • Karade NN, Tiwari GB, Shirodkar SG, Dhoot BM. Efficient and mild oxidative nuclear thiocyanation of activated aromatic compounds using ammonium thiocyanate and diacetoxyiodobenzene. Synth Commun. 2005;35:1197–1201. doi: 10.1081/SCC-200054770

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.