183
Views
3
CrossRef citations to date
0
Altmetric
Articles

An efficient, four-component reaction for the synthesis of novel carbamodithioates

, , , , , , & show all
Pages 43-51 | Received 08 May 2016, Accepted 13 Aug 2016, Published online: 03 Sep 2016

References

  • Tan DS. Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat Chem Biol. 2005;1:74–84.
  • Zarganes-Tzitzikas T, Dömling A. Modern multicomponent reactions for better drug syntheses. Org Chem Front. 2014;1:834–837.
  • Weber L, Illgen K, Almstetter M. Discovery of new multi component reactions with combinatorial methods. Synlett. 1999;1999:366–374.
  • Bienaymé H, Hulme C, Oddon G, et al. Maximizing synthetic efficiency: multi-component transformations lead the way. Chem Eur J. 2000;6:3321–3329.
  • Caladas ED, Hosana Conceicua M, Miranda MCC, et al. Determination of dithiocarbamate fungicide residues in food by a spectrophotometric method using a vertical disulfide reaction system. J Agric Food Chem. 2001;49:4521–4525.
  • Rafin C, Veignie E, Sancholle M, et al. Synthesis and antifungal activity of novel bisdithiocarbamate derivatives of carbohydrates against Fusariumn oxysporum f. sp. lini. J Agric Food Chem. 2000;48:5283–5287.
  • Erian AW, Sherif SM. The chemistry of thiocyanic esters. Tetrahedron. 1999;55:7957–8024.
  • Wood TF, Gardner JH. The synthesis of some dialkylaminoalkyl arylthiourethans and thioureas. J Am Chem Soc. 1941;63:2741–2742.
  • Bowden K, Chana RS. Structure–activity relations. Part 6. The alkaline hydrolysis of 3-methyl-5-methylidene- and 3,5-dimethylthiazolidine-2,4-diones. The addition of thiols to 3-methyl-5-methylidenethiazolidine-2,4-dione. J Chem Soc Perkin Trans. 1990;2:2163–2166.
  • Len C, Boulogne-Merlot A-S, Postel D, et al. Synthesis and antifungal activity of novel bis(dithiocarbamate) derivatives of glycerol. J Agric Food Chem. 1996;44:2856–2858.
  • Schreck R, Meier B, Männel DN, et al. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med. 1992;175:1181–1194.
  • Ha T, Li Y, Gao X, et al. Attenuation of cardiac hypertrophy by inhibiting both mTOR and NFkappaB activation in vivo. Free Radic Biol Med. 2005;39:1570–1580.
  • Goel A, Mazur SJ, Fattah RJ, et al. Benzamide-based thiolcarbamates: a new class of HIV-1 NCp7 inhibitors. Bioorg Med Chem Lett. 2002;12:767–770.
  • Mizuno T, Nishiguchi I, Okushi T, et al. Facile synthesis of S-alkyl thiocarbamates through reaction of carbamoyl lithium with elemental sulfur. Tetrahedron Lett. 1991;32:6867–6868.
  • Beji M, Sbihi H, Baklouti A, et al. Synthesis of F-alkyl N-sulfonyl carbamates and thiocarbamates. J Fluor Chem. 1999;99:17–24.
  • Ertan M, Eckmen H, Ureten M, et al. Bazi as tetrahidro 1,3,5-tiadiazin turevi bilesiklerin antifungal etkileri uzerinde arastirmalar. Mikrobiol Bult. 1982;16:268–278.
  • Mehta RG, Liu J, Constantinou A, et al. Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage. Carcinogenesis. 1995;16:399–404.
  • Sabol M, Kutschy P, Siegfried L, et al. Cytotoxic effect of cruciferous phytoalexins against murine L1210 leukemia and B16 melanoma. Biologia Bratislava. 2000;55:701–707.
  • Banerjee T, DuHadaway JB, Gaspari P, et al. A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene. 2008;27:2851–2857.
  • Gaspari P, Banerjee T, Malachowski WP, et al. Structure−activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. J Med Chem. 2006;49:684–692.
  • Budovská M, Pilátová M, Varinská L, et al. The synthesis and anticancer activity of analogs of the indole phytoalexins brassinin, 1-methoxyspirobrassinol methyl ether and cyclobrassinin. Bioorg Med Chem. 2013;21:6623–6633.
  • Mezencev R, Mojzis J, Pilatova M, et al. Antiproliferative and cancer chemopreventive activity of phytoalexins: focus on indole phytoalexins from crucifers. Neoplasma. 2003;50:239–245.
  • Purkayastha RP. In handbook of phytoalexin metabolism and action. In: Daniel M, Purkayasta RP, editors. Progress in phytoalexin research during the past 50 years. New York: Marcell Dekker; 1995. p. 1–39.
  • Pedras MS, Yaya EE, Glawischnig E. The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep. 2011;28:1381–1405.
  • Hou X, Ge Z, Wang T, et al. Dithiocarbamic acid esters as anticancer agent. Part 1: 4-substituted-piperazine-1-carbodithioic acid 3-cyano-3,3-diphenyl-propyl esters. Bioorg Med Chem Lett. 2006;16:4214–4219.
  • Cao SL, Wang Y, Zhu L, et al. Synthesis and cytotoxic activity of N-((2-methyl-4(3H)-quinazolinon-6-yl)methyl) dithiocarbamates. Eur J Med Chem. 2010;45:3850–3857.
  • Cao SL, Feng YP, Jiang YY, et al. Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg Med Chem Lett. 2006;14:1425–1430.
  • Liu S, Liu F, Yu X, et al. The 3D-QSAR analysis of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains on thymidylate synthase. Bioorg Med Chem Lett. 2005;15:1915–1917.
  • Cao SL, Feng YP, Zheng XL, et al. Synthesis of substituted benzylamino- and heterocyclylmethylamino carbodithioate derivatives of 4-(3H)-quinazolinone and their cytotoxic activity. Arch Pharm Chem Life Sci. 2006;339:250–254.
  • Malaguarnera L, Pilastro MR, Vicari L, et al. Pyrrolidine dithiocarbamate induces apoptosis in human acute myelogenous leukemic cells affecting NF-kappaB activity. Cancer Invest. 2005;23:404–412.
  • Grainger RS, Innocenti P. New applications of dithiocarbamates in organic synthesis. Heteroatom Chem. 2007;18:568–571.
  • Ramazani A, Khoobi M, Torkaman A, et al. One-pot, four-component synthesis of novel cytotoxic agents 1-(5-aryl-1,3,4-oxadiazol-2-yl)-1-(1H-pyrrol-2-yl)methanamines. Eur J Med Chem. 2014;78:151–156.
  • Dianat S, Mahdavi M, Moghimi S, et al. Combined isocyanide-based multi-component Ullmann-type reaction: an efficient access to novel nitrogen-containing pentacyclic compounds. Mol Divers. 2015;19:797–805.
  • Rasouli A, Mahdavi M, Rashidi Ranjbar P, et al. A green one-pot synthesis of N-alkyl-2-(2-oxoazepan-1-yl)-2-arylacetamide derivatives via an Ugi four-center, three-component reaction in water. Tetrahedron Lett. 2012;53:7088–7092.
  • Farjadmand F, Arshadi H, Moghimi S, et al. Synthesis and evaluation of novel quinazolinone-1,2,3-triazoles as inhibitors of lipoxygenase. J Chem Res. 2016;40:188–191.
  • Shariatifar N, Rezaei M, Sayadi M, et al. In-vitro antibacterial evaluation of some fluoroquinolone derivatives against food borne bacteria. J Sci I. R. Iran. 2016;27:129–133.
  • Pilali H, Kamazani SF, Moradi S, et al. Efficient three-step synthesis of benzo[e]imidazo[1,2-c][1,2,3] Triazines. Synth Commun. 2016;46:563–567.
  • Arab S, Sadat-Ebrahimi SE, Mohammadi-Khanaposhtani M, et al. Synthesis and evaluation of chroman-4-one linked to N-benzyl pyridinium derivatives as new acetylcholinesterase inhibitors. Arch Pharm Chem Life Sci. 2015;348:643–649.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.