165
Views
15
CrossRef citations to date
0
Altmetric
Articles

Theoretical study of Cr and Co- porphyrin-induced C70 fullerene: a request for a novel sensor of sulfur and nitrogen dioxide

&
Pages 357-371 | Received 01 Aug 2016, Accepted 12 Feb 2017, Published online: 08 Mar 2017

References

  • Ghosh A, Late DJ, Panchakarla LS, et al. NO2 and humidity sensing characteristics of few-layer graphenes. J Exp Nanosci. 2009;4:313–322.
  • Chougule MA, Nalage SR, Shashwati S, et al. Development of nanostructured ZnO thin film sensor for NO2 detection. J Exp Nanosci. 2014;9:482–490.
  • Szczurek A, Lorenz K. Copper phthalocyanine layer as an organic semiconductor sensor of NO2 in Air. Int J Environ Anal Chem. 1990;41:57–63.
  • Zou CW, Wang J, Xie W. Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites. J Colloid Interface Sci. 2016;478:22–28.
  • Tesfamichael T, Cetin C, Piloto C, et al. The effect of pressure and W-doping on the properties of ZnO thin films for NO2 gas sensing. Appl Surf Sci. 2015;357:728–734.
  • Mane AT, Navale ST, Patil VB. Room temperature NO2 gas sensing properties of DBSA doped PPy–WO3 hybrid nanocomposite sensor. Org Electron. 2015;19:15–25.
  • Sun Y, Zwolińska E, Chmielewski AG. Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: a review. Crit Rev Env Contr. 2016;46:119–142.
  • Phung D, Hien TT, Linh HN, et al. Air pollution and risk of respiratory and cardiovascular hospitalizations in the most populous city in Vietnam. Sci Total Environ. 2016;557-558:322–330.
  • Wang Y, Wang Q, Hang Y. Driving factors of SO2 emissions in 13 cities, Jiangsu, China. Energy Procedia. 2016;88:182–186.
  • Sudalma S, Purwanto P, Santoso LW. The effect of SO2 and NO2 from transportation and stationary emissions sources to SO42− and NO3− in rain water in Semarang. Procedia Environ Sci. 2015;23:247–252.
  • Yao G, Yue H, Yun Y, et al. Chronic SO2 inhalation above environmental standard impairs neuronal behavior and represses glutamate receptor gene expression and memory-related kinase activation via neuroinflammation in rats. Environ Res. 2015;137:85–93.
  • Yi H, Liu J, Zheng K. Effect of sulfur dioxide hydrates on cell cycle, sister chromatid exchange, and micronuclei in Barley. Ecotoxicol Environ Saf. 2005;62:421–426.
  • Tavakol H, Mollaei-Renani A. DFT, AIM, and NBO study of the interaction of simple and sulfur-doped graphenes with molecular halogens, CH3OH, CH3SH, H2O, and H2S. Struct Chem. 2014;25:1659–1667.
  • Tavakol H, Shahabi D. DFT, QTAIM, and NBO study of adsorption of rare gases into and on the surface of sulfur-doped, single-wall carbon nanotubes. J Phys Chem C. 2015;119:6502–6510.
  • Li D, Shi Y, Tian X, et al. Fluorescent probes with dual-mode for rapid detection of SO2 derivatives in living cells: ratiometric and two-photon fluorescent sensors. Sens Actuators, B:Chemical. 2016;233:1–6.
  • Qu G, Zhang J, Li J, et al. SO2 absorption/desorption characteristics of two novel phosphate ionic liquids. Sep Sci Technol. 2013;48:2876–2879.
  • Martinez RI, Herron JT. Acid precipitation: the role of O3-alkene-SO2 systems in the atmospheric conversion of SO2 to H2SO4 aerosol. J Environ Sci Health Part A. 1983;18:739–745.
  • Gondal MA, Bakhtiari IA, Dastageer AK. Laser-based sensor for detection of hazardous gases in the air using waveguide CO2 laser. J Environ Sci Health Part A. 2007;42:871–878.
  • Mowery MD, Hutchins RS, Molina P, et al. Guanidinium-based potentiometric SO2 gas sensor. Anal Chem. 1999;71:201–204.
  • Nisar J, Topalian Z, De Sarkar A, et al. TiO2-based gas sensor: a possible application to SO2. ACS Appl Mater Interfaces. 2013;5:8516–8522.
  • Arshadi S, Pourkhiz F. NBO, AIM and TD-DFT assisted screening of BNNT optimum diameter on ethyl phosphorodimethylamidocyanidate sensor design. Phosphorus Sulfur. 2016;191:1013–1021.
  • Zhao T, Zhang F, Zhang J, et al. Facile preparation of micro and nano-sized CaCO3 particles by a new CO2-storage material. Powder Technol. 2016;301:463–471.
  • Hassani F, Tavakol H. A DFT, AIM and NBO study of adsorption and chemical sensing of iodine by S-doped fullerenes. Sens Actuators, B: Chemical. 2014;196:624–630.
  • El Mahdy AM. Density functional investigation of CO and NO adsorption on TM-decorated C60 fullerene. Appl Surf Sci. 2016;383:353–366.
  • Wu H, Fan X, Kuo JL. Metal free hydrogenation reaction on carbon doped boron nitride fullerene: a DFT study on the kinetic issue. Int J Hydrogen Energ. 2012;37:14336–14342.
  • Zhu L, Yi Y, Shuai Z, et al. Structure to property relationships for multiphoton absorption in covalently linked porphyrin dimers: a correction vector INDO/MRDCI study. J Phys Chem A. 2007;111:8509–8518.
  • Lefebvre JF, Longevial JF, Molvinger K, et al. Porphyrins fused to N-heterocyclic carbene palladium complexes as tunable precatalysts in Mizoroki–Heck reactions: how the porphyrin can modulate the apparent catalytic activity? Comptes Rendus Chimie. 2016;19:94–102.
  • Orzeł Ł, Polaczek J, Procner M. Review: recent advances in the investigations of NO activation on cobalt and manganese porphyrins: a brief review. J Coord Chem. 2015;68:2971–2989.
  • Güngör SA, Köse M, Tümer F, et al. Photoluminescence, electrochemical, SOD activity and selective chemosensor properties of novel asymmetric porphyrin-Schiff base compounds. Dyes Pigments. 2016;130:37–53.
  • Purtaş S, Köse M, Tümer F, et al. A novel porphyrin derivative and its metal complexes: electrochemical, photoluminescence, thermal, DNA-binding and superoxide dismutase activity studies. J Mol Struct. 2016;1105:293–307.
  • Mozhchil RN, Menushenkov AP, Ionov AM, et al. Electronic and atomic structure studies of rare earth metalloporphyrins by XAFS. Phys Procedia. 2015;71:318–322.
  • Wierzbowska M, Sobolewski AL. Ferrimagnetism in 2D networks of porphyrin-X and -XO (X=Sc, … ,Zn) with acetylene bridges. J Magn Magn Mater. 2016;401:304–309.
  • Liu Y, Yue X, Li K, et al. PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds. Coord Chem Rev. 2016;315:153–177.
  • Senge MO, Flanagan KJ, Ryan AA, et al. Conformational and structural studies of meso monosubstituted metalloporphyrins-edge-on molecular interactions of porphyrins in crystals. Tetrahedron. 2016;72:105–115.
  • Wu Y, Liu JC, Guo WB, et al. Three horizontal anchor porphyrins for dye-sensitized solar cells: an optical, electrochemical and photovoltaic investigation. Polyhedron. 2016;117:155–160.
  • Frisch, MJ, et al. Gaussian 98A.11.3. Pittsburg, USA: Gaussian Inc.; 2002.
  • Walczak K, Friedrich J, Dolg M. On the incremental evaluation of BSSE-free interaction energies. Chem Phys. 2009;365:38–43.
  • Brémond ÉA, Kieffer J, Adamo C. A reliable method for fitting TD-DFT transitions to experimental UV–visible spectra. J Mol Struct: THEOCHEM. 2010;954:52–56.
  • Cornard JP, Merlin JC. Molecular structure and spectroscopic properties of 4-nitrocatechol at different pH: UV–visible, Raman, DFT and TD-DFT calculations. Chem Phys. 2005;309:239–249.
  • Rao CN, Seshadri R, Govindaraj A, et al. Fullerenes, nanotubes, onions and related carbon structures. Mat Sci Eng R. 1995;15:209–262.
  • Panckhurst MH. The electronic structures and stereochemistry of NO2+, NO2, and NO2−. J Chem Educ. 1962;39(5):270.
  • Tables of interatomic distances and configuration in molecules and ions. In: Sutton LE, editor. London: The Chemical Society; 1958.
  • Cunningham TP, Cooper DL, Gerratt J, et al. Chemical bonding in oxofluorides of hyper coordinate sulfur. J Chem Soc, Faraday Trans. 1997;93:2247–2254.
  • Waldron KJ, Robinson NJ. How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol. 2009;7:25–35.
  • Pearson RG. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem. 1988;27:734–740.
  • Fukui K, Yonezawa T, Shingu H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys. 1951;20:722–725.
  • Woodward RB, Hoffmann R. Stereochemistry of electrocyclic reactions. J Am Chem Soc. 1965;87:395–397.
  • Tang C, Zhu W, Deng K. Density functional energetics and frontier orbitals analysis for the derivatives of the nonclassical triplet-pentagon-fusion fullerene C64X (X=Si and Ge). J Mol Struct (THEOCHEM). 2010;950:36–40.
  • Glendening ED, Landis CR, Weinhold F. Natural bond orbital methods. WIREs Compu Mol Sci. 2012;2:1–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.