147
Views
4
CrossRef citations to date
0
Altmetric
Articles

Removal of sulfide ions from aqueous solutions using carbon- and silicon-containing sorbents

, , , &
Pages 401-420 | Received 29 Aug 2016, Accepted 20 Mar 2017, Published online: 10 Apr 2017

References

  • Pashkevich MA, Parshina MV. Ecological-geochemical peculiarities of transformation of technogenic massifs of JSC “Severonikel”. Min Inf–Tech Bull. 2006;4:296–302. Russian.
  • Forsberg LS, Ledin S. Effects of sewage sludge on pH and plant availability of metals in oxidising sulphide mine tailings. Sci Total Environ [cited 2016 May 7]. 2006;358(1–3):21–35. Available from http://www.sciencedirect.com/science/article/pii/S0048969705003840 doi: 10.1016/j.scitotenv.2005.05.038
  • Pogosyan JM. Status of water resources of the Orenburg region. Contemp Probl Ecol. 2011;5:24–28. Russian.
  • Chaiko AA. Water pollution the Susuya river (South Sakhalin Island) hydrogen sulfide in 2007. Fundam Res. 2008;3:108–110. Russian.
  • Chaiko AA. Agro-industrial complex of Yuzhno-Sakhalinsk and its influence on qualitative composition of water in the Susuya river. Modern Labor-Intensive Technol. 2009;9:97–100. Russian.
  • Kokryatskaya NM, Zabelina SA, Savvichev AS, et al. Seasonal biogeochemical and microbiological studies of small lakes in taiga zone of northwestern Russian (Arkhangelsk Province). Water Resour. 2012;39(1):78–91. Russian. doi: 10.1134/S009780781201006X
  • Sokolova EA. Bacterial reduction of sulfates in the bottom of the south of lake Baikal. Siberian Ecol J. 2004;2:157–160. Russian.
  • Sesena NL, Astvatsaturov KA. Socio-environmental damages from the pollution of superficial and underground waters Kalugi. Water Treatment. Water Disposal Syst. 2008;11:64–68. Russian.
  • Tyurina IM, Galkina VV. Sulfur compounds in groundwater Perm. Geol Miner Resour Western Urals. 2011;11:150–152. Russian.
  • Stepin SG, Surkov AV, Galkin AN. Study of sulfide pollution of underground waters on the territory of “Gomel chemical plant”. Vitebsk State Technol Univ. 2012;23:119–124. Russian.
  • Frog BN, Skurlatov YI, Strain EV, et al. The influence of water-soluble compounds of restored sulfur onto toxiccal properties of natural and waste waters. Vestnik MGSU. 2012;6:105–113. Russian. doi: 10.22227/1997-0935.2012.6.105-113
  • Sorokin YI, Zagoskina OY. Acid-soluble sulfides in the upper layer of bottom sediments of the north-eastern Black sea shelf: pollution and environmental impact. Oceanology. 2008;2:224–231. Russian.
  • Machado W, Carvalho MF, Santelli RE, et al. Reactive sulfides relationship with metals in sediments from an eutrophicated estuary in Southeast Brazil. Mar Pollut Bull. 2004 [cited 2016 May 7];49(1/2):89–92. Available from: http://www.sciencedirect.com/science/article/pii/S0025326X04000153
  • Al-Shammiri M. Hydrogen sulfide emission from the Ardiyah sewage treatment plant in Kuwait. Desalination. 2004 [cited 2016 May 7];170:1–13. Available from: http://www.sciencedirect.com/science/article/pii/S0011916404800134 doi: 10.1016/j.desal.2004.01.003
  • Pikaar I, Rozendal RA, Rabaey K, et al. In-situ caustic generation from sewage: the impact of caustic strength and sewage composition. Water Res. 2013 [cited 2016 May 7];47(15):5828–5835. Available from: http://www.sciencedirect.com/science/article/pii/S004313541300568X doi: 10.1016/j.watres.2013.07.007
  • Walton JR, Duggan SW, Fagan MR, inventors. Method for reducing hydrogen sulfide emissions from wastewater. United States patent US 6,773,604. 2001 Aug 17.
  • Tandi BM, Devuyst EA, Canini D, inventors; Inco Ltd, assignee. Method for treating aqueous streams containing low valent sulfur compounds. United States patent US 6,461,521. 2000 Nov 14.
  • Vitkovskaya RF, Panov VP, Petrov ST, Tereshchenko LI, Utkina EI, inventors; St. Petersburg state University of technology and design, assignee. Method of sewage purification from sulphide. Russian Federation patent RU 95,117,347. 1995 Oct 12.
  • Harborth P, Hanert H-H, Kucklick M, Gloistein C, inventors. Verfahren zur Beseitigung von sulfidhaltigen toxiscen Cellulose-Abfallsc hlammen in stehenden Gewassern. German patent 19,727,275. 1997 Jun 26.
  • Peroxide LLC, Walton JR, Duggan SW, Fagan MR, inventors. Method for reducing hydrogen sulfide emission from wastewater. United States patent US 6,773,604. 2001 Aug 17.
  • Panov VP, Gryaznova OI. Photocatalytic oxidation of sulfide-thiosulfate admixtures of sewage in an alkaline medium. Ecol Ind Russia. 2001;1:10–12. Russian.
  • Buisman SJN, inventor; Paques BV, assignee. A method of cleaning sulfide-containing waste waters. Russian Federation RU 96,100,756. 1996 Jan 10.
  • Barrado E, Prieto F, Lozano B, et al. Removal of H2S by metal ferrites produced in the pyrification of metal-bearing waste water. Stude of the reaction mechanism. Water Air Soil Pollut. 2001 [cited 2016 May 7];131:367–381. Available from: http://link.springer.com/article/10.1023/A:1011911619025 doi: 10.1023/A:1011911619025
  • Brian MC, inventor. Water treatment system. United States patent US 6,887,373. 2003 Jan 27.
  • Linevich SN, Engibaryants NV, Pyshnova NE, inventors; Novocherkassk State Technical University, assignee. A method for purifying wastewater from the hydrogen sulfide. Russian Federation patent RU 2,090,514. 1994 May 8.
  • Girikov OG, inventors; Novosibirsk State University of Architecture and Civil Engineering, assignee. Process for the purification of natural and waste water from the sulfide and hydrogen sulphide. Russian Federation patent RU 2,285,670. 2006 Oct 20.
  • Girikov OG, inventors; State Educational Institution of Higher Professional Education Novosibirsk State Architectural University, assignee. Method of water purification from hydrogen sulfide and sulfides. Russian Federation patent RU 2,361,822. 2009 Jul 20.
  • FLAGMA [cited 2017 January 27]. Available from: http://flagma.ru/s1/aktivirovanny-ugol-sop1402295-1.html
  • Bagreev A, Bashkova S, Locke DC, et al. Sewage sludge—derived materials as efficient adsorbents for removal of hydrogen sulfide. Environ Sci Technol. 2001 [cited 2016 May 7];35(7):1537–1543. Available from: http://pubs.acs.org/doi/abs/10.1021/es001678h doi: 10.1021/es001678h
  • Zemnukhova L, Kharchenko U, Beleneva I. Biomass derived silica containing products for removal of microorganisms from water. Int J Environ Sci Technol. 2015;12:1495–1502. doi: 10.1007/s13762-014-0529-8
  • Arefieva OD, Zemnukhova LA, Morgun NP, et al. Removal of (2,4-dichlorophenoxy)acetic acid from aqueous solutions using low-cost sorbents. Air Soil Water Res. 2015;8:59–65. doi: 10.4137/ASWR.S31623
  • Vurasko AV, Supalova IO, Petrov AL. The use of rice husk as carbon-silica porous materials for catalytic applications: review. Bull Technol Univ. 2015;18(11):49–56. Russian.
  • Zemnukhova LA, Fedorishcheva GA, Egorov AG, et al. Recovery conditions, impurity composition and characteristics of amorphous silicon dioxide from wastes formed in rice production. Russ J Appl Chem. 2005;78:319–323. Russian. doi: 10.1007/s11167-005-0283-2
  • Zemnukhova LA, Egorov AG, Fedorishcheva GA, et al. Properties of amorphous silica produced from rice and oat processing waste. Inorgan Mater. 2006;42:24–29. Russian. doi: 10.1134/S0020168506010067
  • Zemnukhova LA, Arefieva OD, Kovshun AA. Treatment of alkaline waste water generated by the hydrolysis of rice husk. Adv Mater Res. 2013;781-784:2087–2090. doi: 10.4028/www.scientific.net/AMR.781-784.2087
  • DR 2700™ Portable Spectrophotometer. Methods/Procedures. Hach Company [Internet]. [cited 2016 May 7]. Available from: http://www.hach.com/dr-2700-portable-spectrophotometer-with-lithium-ion-battery/product-downloads?id=7640439008&callback=bc
  • Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(2):309–319. doi: 10.1021/ja01269a023
  • Gregg SJ, Sing KSW. Adsorption, surface area and porosity. London: Academic Press, 1967.
  • The official website of «Quantachrome» (www.quantachrome.com)
  • Dubinin MM. Water vapor adsorption in the microporous structure of carbon adsorbents. Proc Acad Sci USSR. Chemical series. 1981;1:9–23. Russian.
  • Janos P, Buchtova H, Ryznarova M. Sorption of dyes from aqueous solutions onto fly ash. Water Res. 2003[cited 2016 May 7]; 37(20):4938–4944. Available from: http://www.sciencedirect.com/science/article/pii/S004313540300469X doi: 10.1016/j.watres.2003.08.011
  • Freundlich H. Colloid and capillary chemistry. London: Methuen; 1926.
  • Fu Y, Hansen RS, Bartell FE. Thermodynamics of adsorption from solution. III. Free energy changes and surface pressure-area relationships of adsorbed layers. J Phys Colloid Chem. 1949[cited 2016 May 7];53(8):1141–1152. Available from: http://pubs.acs.org/doi/abs/10.1021/j150473a001 doi: 10.1021/j150473a001
  • Hansen RS, Fu Y, Bartell FE. Multimolecular adsorption from binary liquid solutions. J Phys Colloid Chem. 1949[cited 2016 May 7];53(6):769–785. Available from: http://pubs.acs.org/doi/pdf/10.1021/j150471a003 doi: 10.1021/j150471a003
  • Fu Y, Hansen RS, Bartell FE. Thermodynamics of adsorption from solutions. I. The molality and activity “co-efficient of adsorbed layers”. J Phys Colloid Chem. 1948[cited 2016 May 7];52(2):374–386. Available from: http://pubs.acs.org/doi/abs/10.1021/j150458a011
  • Fu Y, Hansen RS, Bartell FE. Remarks on “thermodynamics of adsorption from solutions. I”. J Phys Colloid Chem. 1949[cited 2016 May 7];53(3):454–456. Available from: http://pubs.acs.org/doi/abs/10.1021/j150468a012 doi: 10.1021/j150468a012
  • Zemnukhova LA, Shkorina ED, Fedorishcheva GA. Composition of inorganic components of buckwheat husk and straw. Russ J Appl Chem. 2005;78(2):324–328. Russian. doi: 10.1007/s11167-005-0284-1
  • Bellamy L. Infrared spectra of complex molecules. Moscow: Foreign literature; 1963.
  • Vartapetyan RSh, Voloshchuk AM, Dubinin MM. Water vapor adsorption and the microporous structure of carbon adsorbents. Proc Acad Sci USSR. Chemical series. 1984;7:1447–1452. Russian.
  • Vartapetyan RSh, Voloshchuk AM, Dubinin MM. Water vapor adsorption and the microporous structure of carbon adsorbents. Proc Acad Sci USSR. Chemical series. 1987;5:972–977. Russian.
  • Fan H-T, Sun W, Jiang B, et al. Adsorption of antimony(III) from aqueous solution by mercaptofunctionalized silica-supported organic–inorganic hybrid sorbent: mechanism insights. Chem Eng J. 2016;286:128–138. doi: 10.1016/j.cej.2015.10.048
  • Fan H-T, Tang Q, Sun Y, et al. Selective removal of antimony(III) from aqueous solution using antimony(III)-imprinted organic–inorganic hybrid sorbents by combination of surface imprinting technique with sol–gel process. Chem Eng J. 2014;258:146–156. doi: 10.1016/j.cej.2014.04.118
  • Fan H-T, Sun Y, Tang Q, et al. Selective adsorption of antimony(III) from aqueous solution by ion-imprinted organic–inorganic hybrid sorbent: kinetics, isotherms and thermodynamics. J Taiwan Inst Chem Eng. 2014;45:2640–2648. doi: 10.1016/j.jtice.2014.07.008
  • Soldatkina LM, Sagaidak EV. Kinetics of adsorption of dye on activated carbon. Chem Technol Water. 2010;32(4):388–398.
  • Khokhlova TD, Vlasenko EV, Krasikov DN, et al. Adsorptive and gas chromatographic properties of silochrome modified with silver. Bulletin of Moscow University. Series 2. Chemistry. 2011;52(2):102–107. Russian.
  • Romantsova IV, Burakov AE, Kucherov AE. A study of the kinetics of the process of liquid-phase adsorption of organic matter on hybrid nanostructured carbon sorbents. Proceedings of the Samara Scientific Centre of Russian Academy of Sciences. 2014;16(4/3):611–614. Russian.
  • Jeyaseelan C, Gupta A. Green Tea leaves as a natural adsorbent for the removal of Cr(VI) from aqueous solutions. Air Soil Water Res. 2016[cited 2016 May 7];9:13–19. Available from: http://www.la-press.com/green-tea-leaves-as-a-natural-adsorbent-for-the-removal-of-crvi-from-a-article-a5363 doi: 10.4137/ASWR.S35227
  • Dar A, Shafique U, Anwar J, et al. Removal of sulfide ions from water using rice husk. J Sulfur Chem. 2015[cited 2016 May 7];36(2):187–195. Available from: http://dx.doi.org/10.1080/17415993.2015.1004067 doi: 10.1080/17415993.2015.1004067
  • Golikova BC. Acid-base balance in alcohol solutions of sulfides, cyanides, the ortho – and pyrophosphates of alkali metals [dissertation]. Tver: Tver State University; 2013. Russia.
  • Butenko EO, Kapustin AE. Technology for the removal of sulphides. East European Journal of Advanced Technologies. 2010;3(8):7–9. Russian.
  • Petrov EG, Semenov EV, Chepelev AD. Prospects for the use of adsorbent “Glint” to clear underground natural water contaminated with iron, manganese and hydrogen sulfide. Water and Ecology: Problems and Solutions. 2004;1:3–6. Russian.
  • Linevich SN, Shishlo GV. The complex technology of cleaning and disinfection of the groundwater from hydrogen sulfide, ammonia, iron, and carbon dioxide. New Technologies and Equipment in Water Supply and Sanitation. 2005;5:111. Russian.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.