177
Views
3
CrossRef citations to date
0
Altmetric
Articles

Synthesis, spectral, structural, Hirshfeld surface and DFT studies on bis(N-(4-fluorobenzyl)-N-(2-phenylethyl)dithiocarbamato-S,S′)zinc(II) and its use for the preparation of ZnS and ZnO nanoparticles

, , &
Pages 555-571 | Received 22 Jul 2016, Accepted 02 May 2017, Published online: 25 May 2017

References

  • Gleu K, Schwab R. Disubstituierte Dithiocarbamate als Fällungsreagenzien für Metalle. Angew Chem. 1950;62:320–324. doi: 10.1002/ange.19500621307
  • Hogarth G. Metal-dithiocarbamate complexes: chemistry and biological activity. Mini Rev Med Chem. 2012;12:1202–1215. doi: 10.2174/138955712802762095
  • Berry DJ, Torres MRR, Charoenphun P, et al. Dithiocarbamate complexes as radiopharmaceuticals for medical imaging. Mini Rev Med Chem. 2012;12:1174–1183. doi: 10.2174/138955712802762112
  • Bala V, Gupta G, Sharma VL. Chemical and medicinal versatility of dithiocarbamates: an overview. Mini Rev Med Chem. 2014;14:1021–1032. doi: 10.2174/1389557514666141106130146
  • Nagy EM, Sitran S, Montopoli M, et al. Zinc(II) complexes with dithiocarbamato derivatives: structural characterisation and biological assays on cancerous cell lines. J Inorg Biochem. 2012;117:131–139. doi: 10.1016/j.jinorgbio.2012.09.004
  • Braun V. Including by the oxidation of the dimethylamine salt of dimethyldithiocarbamic acid with iodine in an ethanolic solution. I Chem Ber. 1902;35:817–830. doi: 10.1002/cber.190203501128
  • Nieuwenhuizen PJ. Zinc accelerator complexes, versatile homogenous catalysts in sulfur vulcanization. App Catal A. 2001;207:55–68. doi: 10.1016/S0926-860X(00)00613-X
  • Bravo J, Cordero MB, Casas JS, et al. Tautomerism in coordinated 1-phenyl-5-thione- 1,2,3,4-tetrazole (HL) synthesis and crystal structure of [SnMe2(phen)L2](phen=1,10-phenanthroline). J Organomet Chem. 1996;513:63–69. doi: 10.1016/0022-328X(95)05870-U
  • Wang ZQ, Lu SW, Guo HF, et al. Synthesis, properties and molecular structure of five-coordinate N,N-dibenzyldithiocarbamate complexes of titanocene, zirconocene and hafnocene. Polyhedron. 1992;11:1131–1135. doi: 10.1016/S0277-5387(00)84485-X
  • Baladincz J, Fekete I, Petro J, et al. New results in development of dithiocarbamate type ep/aw additives. Pet Coal. 1998;40:73–76.
  • Hassan EA, Zayed S. Dithiocarbamates as precursors in organic chemistry; synthesis and use. Phosphorus, Sulfur Silicon Relat Elem. 2014;189:300–323. doi: 10.1080/10426507.2013.797416
  • Ensafi AA, Abbasi S. Highly selective and sensitive stripping voltammmetric determination of cobalt with ammonium 2-aminocyclohexene-1-dithiocarboxylate and nitrite. Anal Sci. 2000;16:377–381. doi: 10.2116/analsci.16.377
  • Dhote SS, Deshmukh L, Paliwal L. Heavy metal ions separation on thin layer of impregnated carbamide-formaldehyde polymer. J Chromat Sep Tech. 2012;3:1–3. doi: 10.4172/2157-7064.1000124
  • Milacic V, Chen D, Ronconi L, et al. A novel anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts. Cancer Res. 2006;66:10478–10486. doi: 10.1158/0008-5472.CAN-06-3017
  • Hogarth G, Rainford-Brent EJCRCR, Kabir SE, et al. Functionalised dithiocarbamate complexes: synthesis and molecular structures of 2-diethylaminoethyl and 3-dimethylaminopropyl dithiocarbamate complexes [M{S2CN(CH2CH2NEt2)(2)}(n)] and [M{S2CN(CH2CH2CH2NMe2)(2)}(n)] (n=2, M = Ni, Cu, Zn, Pd; n = 3, M = Co). Inorg Chim Acta. 2009;362:2020–2026. doi: 10.1016/j.ica.2008.09.030
  • Tiekink ERT. Molecular architecture and supramolecular association in the zinc-triad 1,1-dithiolates. Steric control as a design element in crystal engineering. Cryst Eng Commun. 2003;5:101–113. doi: 10.1039/b301318a
  • Ferreira IP, de Lima GM, Paniago EB, et al. Study of metal dithiocarbamate complexes, Part V. Metal complexes of [S2CN(CH2CH(OMe)2]: a standard dimeric zinc dithiocarbamate structural motive, a rare cadmium dithiocarbamate coordination polymer, and a hydrated sodium dithiocarbarmate complex, with a[Na2O2] core and chain. Inorg Chim Acta. 2016;441:137–145. doi: 10.1016/j.ica.2015.11.011
  • Klug HP. The crystal structure of zinc dimethyldithiocarbamate. Acta Cryst. 1966;21:536–546. doi: 10.1107/S0365110X66003426
  • Ramalingam K, Shawkataly OB, Fun HK, et al. Redetermination of the crystal structure of bis{[μ2-(N,N′-dimethyldithiocarbamato-S,S′(N,N′-dimethyldithiocarbamato-S,S′)zinc(II)]}, Zn2[S2CN(CH3)2]4. Z Kristallogr New Cryst Struct. 1998;213:385–386.
  • Bonamico M, Mazzone G, Vaciago A, et al. Structural studies of metal dithiocarbamates. III. The crystal and molecular structure of zinc diethyldithiocarbamate. Acta Cryst. 1965;19:898–909. doi: 10.1107/S0365110X65004620
  • Hagen K, Holwill CJ, Rice DA. Gas-phase electron diffraction study of Bis(dimethyldithiocarbamato)copper(II), [Cu(S2CNMe2)2] and Bis(dimethyldithiocarbamato)zinc(II), [Zn(S2CNMe2). Inorg Chem. 1989;28:3239–3242. doi: 10.1021/ic00315a032
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, Revision D.01. Wallingford, CT: Gaussian Inc; 2013.
  • Bharaty MK, Dani RK, Nath P, et al. Synthesis, structural and thermal studies on Zn(II) complexes of 5-aryl-1,3,4-oxadiazole-2-thione and dithiocarbamates: antibacterial activity and DFT calculations. Polyhedron. 2015;98;84–95. doi: 10.1016/j.poly.2015.05.045
  • Sathiyaraj E, Tamilvanan S, Thirumaran S, et al. Effect of functionalization of N-bound organic moiety in zinc(II) dithiocarbamate complexes on structure, biological properties and morphology of zinc sulfide nanoparticles. Polyhedron. 2017;128;133–144. doi: 10.1016/j.poly.2017.03.010
  • Onwudiwe DC, Kabanda MM, Ebenso EE, et al. Synthesis, crystal structure, thermal and theoretical studies of bis(N-ethyl-N-phenyldithiocarbamato) Ni(II) and (N-ethyl-N-phenyldithiocarbamto)(isothiocyanato)(triphenylphosphine) Ni(II). J Chem Sci. 2016;128:1081–1093. doi: 10.1007/s12039-016-1111-3
  • Baba I, Lee LH, Farina Y, et al. Bis(μ-N-methyl-N-phenyldithiocarbamato)[bis(N-methyl-N-phenyl- dithiocarbamato) zinc (II)]. Acta Crystallogr Sect E. 2002;58:m744–m745. doi: 10.1107/S1600536802021141
  • Herlinger AW, Wenhold SL, Long TV. Infrared spectra of amino acids and their metal complexes. II. Geometrical isomerism in bis(amino acidato)copper(II) complexes. J Am Chem Soc. 1970;92:6474–6481. doi: 10.1021/ja00725a015
  • Bonati F, Ugo R. Organotin(IV) N,N-disubstituted dithiocarbamates. J Organomet Chem. 1967;10:257–268. doi: 10.1016/S0022-328X(00)93085-7
  • Van Gael HCM, Diesveld JW, Pijpans FW, et al. Carbon-13 NMR spectra of dithiocarbamates. Chemical shifts, carbon–nitrogen stretching vibration frequencies and pi.-bonding in the NCS2 fragment. Inorg Chem. 1979;18:3251–3260. doi: 10.1021/ic50201a062
  • Tiekink ERT, Schpector JZ. Emerging supramolecular synthons: C–H···π(chelate) interactions in metal bis(1,1-dithiolates). Chem Commun. 2011;47:6623–6625. doi: 10.1039/c1cc11173f
  • Mary YS, Varghese HT, Yohannan CP, et al. Vibrational spectra, HOMO, LUMO, NBO, MEP analysis and molecular docking study of 2,2-diphenyl-4-(piperidin-1-yl)butanamide. Spectrochim Acta A Mol Biomol Spectrosc. 2015;150:543–556. doi: 10.1016/j.saa.2015.05.090
  • Luque FJ, Lopez JM, Orozco M. Perspective on Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theoret Chem Acc. 2000;103:343–345. doi: 10.1007/s002149900013
  • Scrocco E, Tomasi J. Electrostatic molecular potential analysis of electron density distribution in (ClAlMe2)2 and (AlCl3)2. Adv Quantum Chem. 1978;11:115–193. doi: 10.1016/S0065-3276(08)60236-1
  • Kumbhakar P, Singh D, Tiwary CS, et al. Chemical synthesis and visible photoluminescence emission from monodispersed ZnO nanoparticles. Chalcogenide Lett. 2008;5:387–394.
  • Sathiyaraj E, Selvaganapathi P, Thirumaran S, et al. Synthesis, spectral, structural and computational studies on NiS4 and NiS2NP chromophores: Anagostic and C–H⋯π(chelate) interactions in [Ni(dtc)(PPh3)(NCS)] (dtc = N-(2-phenylethyl)-N-(4methoxybenzyl)- dithiocarbamate and N-(2-phenylethyl)-N-(4chlorobenzyl)dithiocarbamate). J Mol Struct. 2016;1119:385–395. doi: 10.1016/j.molstruc.2016.04.079
  • Sheldrick GM. SHELXTL Version 2014/7. http://shelx.uni-ac.gwdg.de/SHELX/index.php.
  • Wolff SK, Grimwood DJ, McKinnon JJ, et al. Crystal Explorer (Version 3.1). University of Western Australia; 2012.
  • Nagaraja R, Nagaraju K, Girija CR, et al. Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol. 2012;215–216:91–97. doi: 10.1016/j.powtec.2011.09.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.