60
Views
5
CrossRef citations to date
0
Altmetric
Articles

Theoretical investigation of vinylogous anomeric effect on 4-halo-4-H-pyran and 4-halo-4-H-thiopyran molecules

, &
Pages 665-673 | Received 22 Jul 2018, Accepted 12 Aug 2018, Published online: 31 Aug 2018

References

  • Juaristi E, Bandala Y. Anomeric effect in saturated heterocyclic ring systems. Adv Heterocycl Chem. 2012;105:189–222. doi: 10.1016/B978-0-12-396530-1.00002-4
  • Juaristi E, Cuevas G. Recent studies of the anomeric effect. Tetrahedron. 1992;48:5019–5087. doi: 10.1016/S0040-4020(01)90118-8
  • Kirby AJ. The anomeric effect and related stereoelectronic effects at oxygen. Berlin: Springer; 1983.
  • Lemieux RU. Effects of unshared pairs of electrons and their solvation on conformational equilibria. Pure Appl Chem. 1971;25:527–548. doi: 10.1351/pac197125030527
  • Juaristi E, Cuevas G. The anomeric effect. Boca Raton, FL: CRC Press; 1995.
  • Takahashi O, Yamasaki K, Kohno Y, et al. The origin of the generalized anomeric effect: possibility of CH/n and CH/π hydrogen bonds. Carbohydr Res. 2009;344:1225–1229. doi: 10.1016/j.carres.2009.04.011
  • Katritzky AR, Steel PJ, Denisenko SN. X-Ray crystallographic evidence for a vinylogous anomeric effect in benzotriazole-substituted heterocycles. Tetrahedron. 2001;57:3309–3314. doi: 10.1016/S0040-4020(01)00218-6
  • Edward JT. Stability of glycosides to acid hydrolysis. Chem Ind (London. 1955: 1102–1104.
  • Anderson CB, Sepp DT. Conformation and the anomeric effect in 2-halotetrahydropyrans. J Org Chem. 1967;32:607–611. doi: 10.1021/jo01278a021
  • Altona C, Romers C, Buys HR, et al. Geometry and conformational properties of some five- and six-membered heterocyclic compounds containing oxygen or sulfur. Top Stereochem. 1969;4:39–97.
  • Fuchs B, Ellencweig A, Tartakovsky E, et al. Solvent polarity and the anomeric effect. Angew Chem Int Ed. 1986;25:287–289. doi: 10.1002/anie.198602871
  • Wiberg KB, Bailey WF, Lambert KM, et al. The anomeric effect: it’s complicated. J Org Chem. 2018;83:5242–5255. doi: 10.1021/acs.joc.8b00707
  • Juaristi E, Notario R. Density Functional Theory Computational Reexamination of the Anomeric Effect in 2-Methoxy- and 2-Cyano-1,3-Dioxanes and 1,3-Dithianes. Stereoelectronic Interactions Involving the Cyano (C≡N:) Group Revealed by Natural Bond Orbital (NBO) Analysis”. J. Org. Chem.: In press, And references therein.
  • Tanaka S, Kojić D, Tsenkova R, et al. Quantification of anomeric structural changes of glucose solutions using near-infrared spectra. Carbohydr Res. 2018;463:40–46. doi: 10.1016/j.carres.2018.04.012
  • Martins FA, Silla JM, Freitas MP. Theoretical study on the anomeric effect in α-substituted tetrahydropyrans and piperidines. Carbohydr Res. 2017;451:29–35. doi: 10.1016/j.carres.2017.09.007
  • Linclau B, Golten S, Light M, et al. The conformation of tetrafluorinated methyl galactoside anomers: crystallographic and NMR studies. Carbohydr Res. 2011;346:1129–1139. doi: 10.1016/j.carres.2011.04.007
  • Freitas MP, Rittner R, Tormena CF, et al. The role of stereoelectronic interactions in the conformational isomerism of some phosphorus-containing model compounds. J Phys Org Chem. 2008;21:505–509. doi: 10.1002/poc.1372
  • Erdem SS, Varnali T, Aviyente V. Ab initio study on the conformational behaviour of ethane-1,1-diol and ethane-1,1,2-triol in solution. J Phys Org Chem. 1997: 196–206. doi: 10.1002/(SICI)1099-1395(199704)10:4<196::AID-POC889>3.0.CO;2-O
  • Liu T, Yuan F, Li BC, et al. Theoretical study on the anomeric effect in carbene compound XC:CH2F (X = CH3, NH2, OH). J Mol Struct Theochem. 2010;951:82–88. doi: 10.1016/j.theochem.2010.04.012
  • Omoto K, Marusaki K, Hirao H, et al. Theoretical study of the anomeric effect in CH2ClOH. J Phys Chem A. 2000;104:6499–6504. doi: 10.1021/jp994165+
  • Martins LE, Freitas MP. Anomeric effect plays a major role in the conformational isomerism of fluorinated pnictogen compounds. J Phys Org Chem. 2008;21:881–885. doi: 10.1002/poc.1397
  • Favero LB, Caminati W, Velino B. Conformation of dimethoxymethane: roles of anomeric effects and weak hydrogen bonds: a free jet microwave study. Phys Chem Chem Phys. 2003;5:4776–4779. doi: 10.1039/b308197d
  • Roohi H, Ebrahimi A. Anomeric effect and rotational barrier in fluoromethanol: a theoretical study. J Mol Struct Theochem. 2005;726:141–148. doi: 10.1016/j.theochem.2005.04.005
  • Venkatesan V, Viswanathan KS. Conformations of 1,1-diethoxyethane: a matrix isolation infrared and ab initio study. J Mol Struct. 2011;988:79–86. doi: 10.1016/j.molstruc.2010.11.078
  • Haist R, Mews R, Oberhammer H. Molecular structure and conformations of bis(trifluoromethyl)sulfurdiimide. Mendeleev Commun. 2006;16:134–135. doi: 10.1070/MC2006v016n03ABEH002276
  • Martinez-Grau A, Marco JL. Friedländer reaction on 2-amino-3-cyano-4H-pyrans: synthesis of derivatives of 4H-pyran [2,3-b] quinoline, new tacrine analogues. Bioorg Med Lett. 1997;7:3165–3170. doi: 10.1016/S0960-894X(97)10165-2
  • Shestopalov AM, Niazimbetova ZI, Evans DH, et al. Synthesis of 2-amino-4-aryl-3-cyano-6-methyl-5-ethoxycarbonyl-4H-pyrans. Heterocycles. 1999;51:1101–1107. doi: 10.3987/COM-99-8472
  • Bloxham J, Dell CP, Smith CW. Preparation of some new benzylidenemalononitriles by an SNAr reaction: application to naphtho[1,2-b]pyran synthesis. Heterocycles. 1994;38:399–408. doi: 10.3987/COM-93-6594
  • Zhou J-F. One-step synthesis of pyridine and 4 H-pyran derivatives from bisarylidenecyclohexanone and malononitrile under microwave irradiation. Synth Commun. 2003;33:99–103. doi: 10.1081/SCC-120015564
  • Stoyanov EV, Ivanov IC, Heber D. General method for the preparation of substituted 2-amino-4H,5H-pyrano[4,3-b]pyran-5-ones and 2-amino-4H-pyrano[3,2-c]pyridine-5-ones. Molecules. 2000;5:19–32. doi: 10.3390/50100019
  • Marco JL, Chinchon PM. Michael reactions of β-keto phosphonates with arylmethylene-malononitriles: the first synthesis of densely functionalized 5-diethylphosphinyl-2-amino-4H-pyrans. Heterocycles. 1999;51:1137–1140. doi: 10.3987/COM-99-8530
  • Zonouzi A, Kazemi D, Nezamabadi M. An efficient one-pot synthesis of 2-amino-4H-pyrans. OrgPrep Proc Int. 2006;38:307–312. doi: 10.1080/00304940609355991
  • El-Wahab AHFA. Synthesis, reactions and evaluation of the antimicrobial activity of some 4-(p-halophenyl)-4H-naphthopyran, pyranopyrimidine and pyranotriazolopyrimidine derivatives. Pharmaceuticals. 2012;5:745–757. doi: 10.3390/ph5070745
  • Martin N, Martinez-Grau A, Seoane C. Asymmetric synthesis of 3-alkoxycarbonyl-2-amino-5-cyano-4,6-diphenyl-4H-pyrans. Tetrahedron Asymmetry. 1994;5:1435–1438. doi: 10.1016/0957-4166(94)80105-3
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision A.02. Wallingford (CT): Gaussian; 2009.
  • Krishnan R, Binkley JS, Seeger R, et al. Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys. 1980;72:650–654. doi: 10.1063/1.438955
  • McLean AD, Chandler GS. Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z = 11-18. J Chem Phys. 1980;72:5639–5648. doi: 10.1063/1.438980
  • Curtiss LA, McGrath MP, Blandeau J-P, et al. Extension of Gaussian-2 theory to molecules containing third-row atoms Ga-Kr. J Chem Phys. 1995;103:6104–6113. doi: 10.1063/1.470438
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652. doi: 10.1063/1.464913
  • Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1988;88:899–926. doi: 10.1021/cr00088a005
  • Glendening ED, Badenhoop JK, Reed AE, et al. NBO 6.0. : theoretical chemistry institute. Madison (WI): University of Wisconsin; 2013.
  • Pearson RG. Recent advances in the concept of hard and soft acids and bases. J Chem Educ. 1987;64:561–567. doi: 10.1021/ed064p561
  • Parr RG, Chattaraj PK. Principle of maximum hardness. J Am Chem Soc. 1991;113:1854–1855. doi: 10.1021/ja00005a072
  • Pearson RG. The principle of maximum hardness. Acc Chem Res. 1993;26:250–255. doi: 10.1021/ar00029a004
  • Pearson RG. Maximum chemical and physical hardness. J Chem Educ. 1999;76:267–275. doi: 10.1021/ed076p267
  • Ayers PW, Parr RG. Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc. 2000;122:2010–2018. doi: 10.1021/ja9924039
  • Christiansen PA, Palke WE. Effects of exchange energy and orbital orthogonality on barriers to internal rotation. J Chem Phys. 1977;67:57–63. doi: 10.1063/1.434541
  • Weisskopf VF. Of atoms, mountains, and stars: a study in qualitative physics. Science. 1975;187:605–612. doi: 10.1126/science.187.4177.605
  • Badenhoop JK, Weinhold F. Natural steric analysis of internal rotation barriers. Int J Quantum Chem. 1999;72:269–280. doi: 10.1002/(SICI)1097-461X(1999)72:4<269::AID-QUA9>3.0.CO;2-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.