839
Views
51
CrossRef citations to date
0
Altmetric
Reviews

Current developments in chemistry, coordination, structure and biological aspects of 1-(acyl/aroyl)-3- (substituted)thioureas: advances Continue … 

ORCID Icon, , , , &
Pages 312-350 | Received 20 Jun 2018, Accepted 15 Nov 2018, Published online: 05 Dec 2018

References

  • Ruswanto, Miftaha AM, Tjahjono DH, Siswandono, Synthesis and in vitro cytotoxicity of 1-benzoyl-3-methyl thiourea derivatives. Procedia Chem. 2015;17:157–161.
  • Kumar V, Chimni SS. Recent developments on thiourea based anticancer chemotherapeutics. Anticancer Agents Med Chem. 2015;15(2):163–175.
  • Faidallah HM, Khan KA, Asiri AM. Synthesis and biological evaluation of new 3-trifluoromethylpyrazolesulfonyl-urea and thiourea derivatives as antidiabetic and antimicrobial agents. J Fluor Chem. 2011;132(2):131–137.
  • Bielenica A, Kędzierska E, Koliński M, et al. 5-HT2 receptor affinity, docking studies and pharmacological evaluation of a series of 1, 3-disubstituted thiourea derivatives. Eur J Med Chem. 2016;116:173–186.
  • Aher NG, Pore VS, Mishra NN, et al. Synthesis and antifungal activity of 1, 2, 3-triazole containing fluconazole analogues. Bioorg Med Chem Lett. 2009;19(3):759–763.
  • Han T, Cho JH, Oh CH. Synthesis and biological evaluation of 1β-methylcarbapenems having cyclic thiourea moieties and their related compounds. Eur. J Med Chem. 2006;41(7):825–832.
  • Zhong Z, Xing R, Liu S, et al. Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydr Res. 2008;343(3):566–570.
  • Amir M, Kumar H, Javed S. Condensed bridgehead nitrogen heterocyclic system: synthesis and pharmacological activities of 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives of ibuprofen and biphenyl-4-yloxy acetic acid. Eur J Med Chem. 2008;43(10):2056–2066.
  • Manjula S, Noolvi NM, Parihar KV, et al. Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzothiazole derivatives: a novel class of anticancer agents. Eur J Med Chem. 2009;44(7):2923–2929.
  • Khan KM, Naz F, Taha M, et al. Synthesis and in vitro urease inhibitory activity of N, N′-disubstituted thioureas. Eur J Med Chem. 2014;74:314–323.
  • Mumtaz A, Arshad J, Saeed A, et al. Synthesis, characterization and urease inhibition studies of transition metal complexes of thioureas bearing Ibuprofen moiety. J Chil Chem Soc. 2018;63(2):3934–3940.
  • Sijia X, Liping D, Shaoyong K, et al. Synthesis, crystal structure and herbicidal activity of 1-benzoyl-3-(4,6-disubstitute-pyrimidine-2-yl)-thiourea derivatives. Chem J Internet. 2003;5:67–70.
  • Xu X, Qian X, Li Z, et al. Synthesis and insecticidal activity of new substituted N-aryl-N′-benzoylthiourea compounds. J Fluor Chem. 2003;121(1):51–54.
  • Saeed A, Su M, Rafiq M, et al. Iminothiazoline-sulfonamide hybrids as jack bean urease inhibitors; synthesis, kinetic mechanism and computational molecular modeling. Chem Biol Drug Des. 2015;87:434–443.
  • Wang JK, Zong YX, Wang XC, et al. Synthesis of N-benzothiazol-2-yl-amides by Pd-catalyzed C(sp2)H functionalization. Chin Chem Lett. 2015;26(11):1376–1380.
  • Aly AA, Malah TE, Ishak EA, et al. Elayat WM. Tetracyanoethene and 1-amino-1,2,2-ethenetricarbonitrile in the synthesis of heterocycles of prospective antioxidant and antibacterial. J Heterocyclic Chem. 2016;53(3):963–969.
  • Saeed A, Qamar R, Fattah TA, et al. Recent developments in chemistry, coordination, structure and biological aspects of 1-(acyl/aroyl)-3-(substituted)thioureas. Res Chem Intermed. 2017;43(5):3053–3093.
  • Bregović VB, Basarić N, Mlinarić-Majerski K. Anion binding with urea and thiourea derivatives. Coord Chem Rev. 2015;295:80–124.
  • Zhang Y, Qin J, Lin Q, et al. Convenient synthesis and anion recognition properties of N-flurobenzoyl-N′-phenylthioureas in water-containing media. J Fluor Chem. 2006;127(9):1222–1227.
  • Si K, Nagamine M, Yano Y. Synthesis and anion recognition properties of 8,8′-dithioureido-2,2′-binaphthalene. Tetrahedron Lett. 2003;44(49):8801–8804.
  • Saeed A, Erben MF, Shaheen U, et al. Synthesis, structural and vibrational properties of 1-(4-fluorobenzoyl)-3-(isomeric fluorophenyl) thioureas. J Mol Struct. 2011;1000(1):49–57.
  • Guang J, Larson AJ, Zhao JCG. Stereoselective Mannich reaction of S-phenyl thioesters catalyzed by bifunctional organocatalysts. Adv Synth Catal. 2015;357(2–3):523–529.
  • Mao Z, Lin A, Shi Y, et al. Chiral tertiary amine thiourea-catalyzed asymmetric inverse-electron-demand Diels-Alder reaction of chromone heterodienes using 3-vinylindoles as dienophiles. J Org Chem. 2013;78(20):10233–10239.
  • Saeed A, Flörke U, Erben MF. A review on the chemistry, coordination, structure and biological properties of 1-(acyl/aroyl)-3-(substituted) thioureas. J Sulfur Chem. 2014;35(3):318–355.
  • Correa RS, de Oliveira KM, Delolo FG, et al. Ru(II) based complexes with N-(acyl)-N′,N′-(disubstituted) thiourea ligands: synthesis, characterization, BSA-and DNA-binding studies of new cytotoxic agents against lung and prostate tumour cells. J Inorg Biochem. 2015;150:63–71.
  • Elhusseiny AF, Eldissouky A, Al-Hamza AM, et al. Metal complexes of the nanosized ligand N-benzoyl-N′-(p-amino phenyl)thiourea: synthesis, characterization, antimicrobial activity and the metal uptake capacity of its ligating resin. J Mol Struct. 2015;1100:530–545.
  • Selvakumaran N, Pratheepkumar A, Ng S, et al. Synthesis, structural characterization and cytotoxicity of nickel(II) complexes containing 3,3-dialkyl/aryl-1-benzoylthiourea ligands. Inorg Chim Acta. 2013;404:82–87.
  • Li C, Yang W, Liu H, et al. Crystal structures and antifungal activities of fluorine-containing thioureido complexes with nickel(II). Molecules. 2013;18(12):15737–15749.
  • Correa RS, Oliveira KM, Pérez H, et al. Batista AA. cis-bis (N-benzoyl-N′,N′-dibenzylthioureido)platinum(II): synthesis, molecular structure and its interaction with human and bovine serum albumin. Arab J Chem. 2015. (Oct 22), in press. doi:10.1016/j.arabjc.2015.10.006.
  • Binzet G, Arslan H, Flörke U, et al. Synthesis, characterization and antimicrobial activities of transition metal complexes of N,N-dialkyl-N′-(2-chlorobenzoyl)thiourea derivatives. J Coord Chem. 2006;59(12):1395–1406.
  • Maurya MR, Uprety B, Avecilla F, et al. Palladium(II) complexes of OS donor N-(di(butyl/phenyl)carbamothioyl)benzamide and their antiamoebic activity. Eur J Med Chem. 2015;98:54–60.
  • ElHusseiny AF, Eldissouky A, Al-Hamza AM, et al. Structure–property relationship studies of copper(I) complexes of nanosized hypodentate ligands and evaluation of their antitumor and antimicrobial activities. J Coord Chem. 2015;68(2):241–260.
  • Sumrra SH, Hanif M, Chohan ZH, et al. Metal based drugs: design, synthesis and in-vitro antimicrobial screening of Co(II), Ni(II), Cu(II) and Zn(II) complexes with some new carboxamide derived compounds: crystal structures of N-[ethyl (propan-2-yl)carbamothioyl]thiophene-2-carboxamide and its copper (II) complex. J Enzyme Inhib Med Chem. 2016;31(4):590–598.
  • Koch KR. New chemistry with old ligands: N-alkyl-and N,N-dialkyl-N′-acyl(aroyl) thioureas in co-ordination, analytical and process chemistry of the platinum group metals. Coord Chem Rev. 2001;216:473–488.
  • Aly AA, Ahmed EK, El-Mokadem KM, et al. Update survey on aroyl substituted thioureas and their applications. J Sulfur Chem. 2007;28(1):73–93.
  • Hemdan MM, El-Bordany EA. Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives. Chem Pap. 2016;70(8):1117–1125.
  • Nahakpam L, Chipem FA, Chingakham BS, et al. Diacetoxyiodobenzene assisted C-O bond formation via sequential acylation and deacylation process: synthesis of benzoxazole amides and their mechanistic study by DFT. Org Biomol Chem. 2016;14(32):7735–7745.
  • Erşen D, Ülger M, Mangelinckx S, et al. Synthesis and anti(myco)bacterial activity of novel 5, 5-diphenylpyrrolidine N-aroylthiourea derivatives and a functionalized hexahydro-1H-pyrrolo [1,2-c] imidazole. Med Chem Res. 2017;26(9):2152–2160.
  • Mahmoodi NO, Mohammadi Zeydi M, Biazar E, et al. Synthesis of novel thiazolidine-4-one derivatives and their anticancer activity. Phosphorus Sulfur Silicon Relat Elem. 2017;192(3):344–350.
  • Qiao L, Zhang Y, Hu W, et al. Synthesis, structural characterization and quantum chemical calculations on 1-(isomeric methylbenzoyl)-3-(4-trifluoromethylphenyl)thioureas. J Mol Struct. 2017;1141:309–321.
  • Cairo RR, Stevens AMP, de Oliveira TD, et al. Understanding the conformational changes and molecular structure of furoyl thioureas upon substitution. Spectrochim Acta A Mol Biomo Spectrosc. 2017;176:8–17.
  • Gumus I, Solmaz U, Binzet G, et al. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions. J Mol Struct. 2018;1157:78–88.
  • Saeed A, Ashraf Z, Erben MF, et al. Vibrational spectra and molecular structure of isomeric 1-(adamantan-1-ylcarbonyl)-3-(dichlorophenyl) thioureas. J Mol Struct. 2017;1129:283–291.
  • Karagiannidis LE, Hiscock JR, Gale PA. The influence of stereochemistry on anion binding and transport. Supramol Chem. 2013;25(9–11):626–630.
  • Odago MO, Colabello DM, Lees AJ. A simple thiourea based colorimetric sensor for cyanide anion. Tetrahedron 2010;66(38):7465–7471.
  • Stodulski M, Kohlhepp SV, Raabe G, et al. Exploration of the bis(thio)urea-catalyzed atropselective synthesis of Marinopyrrole A. Eur J Org Chem. 2016;2016(12):2170–2176.
  • Zhao C, Chen SB, Seidel D. Direct formation of oxocarbenium ions under weakly acidic conditions: catalytic enantioselective oxa-Pictet-Spengler reactions. J Am Chem Soc. 2016;138(29):9053–9056.
  • Ghosh D, Gupta N, Abdi SH, et al. Organocatalyzed enantioselective allylation of isatins by using a chiral amino alcohol derived squaramide as catalyst. Eur J Org Chem. 2015;2015(13):2801–2806.
  • Štrukil V, Igrc MD, Eckert-Maksić M, et al. Click Mechanochemistry: Quantitative synthesis of ‘ready to use’ chiral organocatalysts by efficient two-fold thiourea coupling to vicinal diamines. Chem Eur J. 2012;18(27):8464–8473.
  • Huang Wg, Wang Hs, Huang Gb, et al. Enantioselective Friedel-Crafts alkylation of N-methylindoles with nitroalkenes catalyzed by chiral bifunctional abietic-acid-derived thiourea-ZnII complexes. Eur J Org Chem. 2012;2012(29):5839–5843.
  • Jiang X, Zhang B, Zhang Y, et al. Direct asymmetric Michael addition of thioether-based aryl sulfanyl-propan-2-one to nitroalkenes catalyzed by a chiral amine-thiourea bifunctional organocatalyst. Chirality. 2010;22(7):625–634.
  • Lu A, Wang Z, Zhou Z, et al. Application of ‘hydrogen bonding interaction’ in new drug development: design, synthesis, antiviral activity, and SARs of thiourea derivatives. J Agric Food Chem. 2015;63(5):1378–1384.
  • Amendola V, Boiocchi M, Esteban-Gómez D, et al. Chiral receptors for phosphate ions. Org Biomol Chem. 2005;3(14):2632–2639.
  • Yusof MSM, Ayob NAC, Kadir MA, et al. 1, 2-Bis [N′-(2, 2-dimethylpropionyl)thioureido]cyclohexane. Acta Cryst. 2008, 64(5), o937–o937.
  • Jumal J, Ibrahim AR, Yamin BM. (±)-1, 2-Bis(N′-benzoylthioureido) cyclohexane. Acta Cryst. 2011;67(5):o1256–o1256.
  • Duan XE, Li R, Tong HB, et al. Synthesis and structural characterization of electrochemically reversible bisferrocenes containing bis(acyl-thiourea)s: enantiomers and conformers. New J Chem. 2017;41(9):3333–3343.
  • Mazák K, Noszál B. Advances in microspeciation of drugs and biomolecules: species-specific concentrations, acid-base properties and related parameters. J Pharm Biomed Anal. 2016;130:390–403.
  • Babić S, Horvat AJ, Pavlović DM, et al. Determination of pKa values of active pharmaceutical ingredients. Trends Anal Chem. 2007;26(11):1043–1061.
  • Roda G, Dallanoce C, Grazioso G, et al. Determination of acid dissociation constants of compounds active at neuronal nicotinic acetylcholine receptors by means of electrophoretic and potentiometric techniques. Anal Sci. 2010;26(1):51–54.
  • Aslan N, Erden PE, Doğan A, et al. Protonation constants of some alanyl dipeptides in mixed aqueous organic solvents. J Solution Chem. 2016;45(2):299–312.
  • Dohoda D, Tsinman K, Tsinman O, et al. Spectrophotometric pKa determination of ionizable pharmaceuticals: Resolution of molecules with weak pH-dependent spectral shift. J Pharm Biomed Anal. 2015;114:88–96.
  • Shelley JC, Cholleti A, Frye LL, et al. Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007;21(12):681–691.
  • Ersen D, Gemili M, Sarı H, et al. Acid dissociation constants of 5, 5-diphenylpyrrolidine N-aroylthioureas and stability constants of their Pt (II) and Ni (II) complexes in Acetonitrile-water hydroorganic solvent. CBÜ Fen Bil Dergi. 2017;13(1):125–138.
  • Nural Y. Synthesis and determination of acid dissociation constants in dimethyl sulfoxide-water hydro-organic solvent of 5,5-diphenylpyrrolidine N-aroylthiourea derivatives. J Turkish Chem Soc Sect Chem. 2017;4(3):841–854.
  • Schoultz X, Gerber T, Hosten E. Formation of a methine carbon-to-rhenium σ bond in an oxorhenium (V)-benzothiazole complex. Inorg Chem Comm. 2016;68:13–16.
  • Date RW, Iglesias EF, Rowe KE, et al. Metallomesogens by ligand design. Dalton Trans. 2003;10:1914–1931.
  • Fleischmann EK, Zentel R. Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices. Angew Chem Int Ed. 2013;52(34):8810–8827.
  • Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46(26):4832–4887.
  • Tschierske C. Development of structural Complexity by liquid-crystal Self-assembly. Angew Chem Int Ed. 2013;52(34):8828–8878.
  • Choudhury TD, Shen Y, Rao NV, et al. Dinuclear ortho-metallated palladium(II) azobenzene complexes with acetato and chloro bridges: influence of polar substituents on the mesomorphic properties. J Organomet Chem. 2012;712:20–28.
  • Mun Jung B, Dong Huang Y, Young Chang J. Preparation of discotic metallomesogens based on phenacylpyridines showing room temperature columnar phases. Liq Cryst. 2009;37(1):85–92.
  • Kadkin ON, Kim EH, Kim SY, et al. Synthesis and liquid crystal properties of copper(II) and palladium(II) chelates with new ferrocene-containing enaminoketones. Polyhedron. 2009;28(7):1301–1307.
  • Torralba M, Cano M, Campo J, et al. Pyrazole-based allylpalladium complexes: supramolecular architecture and liquid crystal behaviour. Inorg Chem Commun. 2006;9(12):1271–1275.
  • Liu TM, Lin KT, Li FJ, et al. The enhanced π–π interactions in metallomesogens. Tetrahedron. 2015;71(45):8649–8660.
  • Martin A, Mügge C, Gin DL, et al. Combined stabilizing effects of trifluoromethyl groups and semifluorinated side chains on the thermotropic liquid-crystal behavior of β-enamino ketone ligands and their bischelate Pd(II) complexes. Eur J Inorg Chem. 2014;2014(32):5609–5617.
  • Ionescu A, Godbert N, Crispini A, et al. Photoconductive Nile red cyclopalladated metallomesogens. J Mater Chem. 2012;22(44):23617–23626.
  • Omnès L, Cîrcu V, Hutchins PT, et al. Possible transition from rod-like to disc-like behaviour in ortho-metallated imine complexes of palladium(II): crystal and molecular structure of three palladium complexes. Liq Cryst. 2005;32(11–12):1437–1447.
  • Cîrcu V, Gibbs TJ, Omnès L, et al. Orthometallated palladium(II) imine complexes as candidate materials for the biaxial nematic phase. crystal and molecular structure of three palladium imine complexes. J Mater Chem. 2006;16(44):4316–4325.
  • Ilis M, Batalu D, Pasuk I, et al. Cyclometalated palladium(II) metallomesogens with schiff bases and N-benzoyl thiourea derivatives as co-ligands. J Mol Liq. 2017;233:45–51.
  • Iliş M, Micutz M, Cîrcu V. Luminescent palladium(II) metallomesogens based on cyclometalated schiff bases and N-benzoyl thiourea derivatives as co-ligands. J Organomet Chem. 2017;836:81–89.
  • Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46(26):4832–4887.
  • Cuerva C, Campo JA, Cano M, et al. Nanostructured discotic Pd(II) metallomesogens as one-dimensional proton conductors. Dalton Trans. 2017;46(1):96–105.
  • Micutz M, Pasuk I, Iliş M. Tuning the liquid crystalline properties of palladium(II) metallomesogens: a study of rod-like to disc-like transition in cyclopalladated complexes with N-benzoyl thiourea derivatives. J Mol Liq. 2017;243:151–156.
  • Iliş M, Micutz M, Pasuk I, et al. Synthesis and liquid crystalline properties of novel fluorinated N-benzoyl thiourea compounds. effect of perfluoroalkyl chains on the thermal behavior and smectic phases stability. J Fluor Chem. 2017;204:84–89.
  • Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 2009;35(1):32–46.
  • Cuajungco MP, Goldstein LE, Nunomura A, et al. Evidence that the β-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of Aβ by zinc. J Biol Chem. 2000;275(26):19439–19442.
  • Dassanayake K, Jayasinghe G, Surapaneni A, et al. A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Manage. 2015;38:321–335.
  • Zhou L, Wang Y, Liu Z, et al. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater. 2009;161(2–3):995–1002.
  • Huang X, Cao X, Wang W, et al. Preparation of a novel resin with acyl and thiourea groups and its properties for Cu(II) removal from aqueous solution. J Environ Manage. 2017;204:264–271.
  • Kong Z, Li X, Tian J, et al. Comparative study on the adsorption capacity of raw and modified litchi pericarp for removing Cu(II) from solutions. J Environ Manage. 2014;134:109–116.
  • Sundar A, Prabhu M, Gandhi NI, et al. Synthesis, characterization, structural analysis of metal(II) complexes of N′-[(E)-3-bromo-5-chloro-2-hydroxybenzidene]-4-hydroxybenzohydrazide-multisubstituted Schiff base as a F− and Cu2+ ions selective chemosensor. Spectrochim Acta A Mol Biomol Spectrosc. 2014;129:509–518.
  • Hasan S, Hamedan NA, Zaki HM. Application of p-dimethylaminobenzaldehyde benzoylthiourea as a colorimetric chemosensor for detection of Cu2+ in aqueous solution. Int J Chem Eng Appl. 2017;8(1):22.
  • Yu Y, Lin LR, Yang KB, et al. p-Dimethylaminobenzaldehyde thiosemicarbazone: a simple novel selective and sensitive fluorescent sensor for mercury(II) in aqueous solution. Talanta. 2006;69(1):103–106.
  • Khairul WM, Daud AI, Hanifaah NAM, et al. Structural study of a novel acetylide-thiourea derivative and its evaluation as a detector of benzene. J Mol Struct. 2017;1139:353–361.
  • Nandre JP, Patil SR, Sahoo SK, et al. A chemosensor for micro-to nano-molar detection of Ag+ and Hg2+ ions in pure aqueous media and its applications in cell imaging. Dalton Trans. 2017;46(41):14201–14209.
  • Gunasekaran N. Palladium(II) complexes with 2, 4-dichloro-N-[di(alkyl/aryl) carbamothioyl]benzamide derivatives and triphenylphosphine as effective catalysts for oxidation of alcohols in ionic liquid. Inorg Chem Comm. 2018;89:55–59.
  • Ali Z, Richey NE, Bock DC, et al. N, N-disubstituted-N′-acylthioureas as modular ligands for deposition of transition metal sulfides. Dalton Trans. 2018;47(8):2719–2726.
  • Aly AA, Ramadan M, Mohamed AM, et al. Thieno [2, 3-d] pyrimidines in the synthesis of new fused heterocyclic compounds of prospective antitumor and antioxidant agents (Part II). J Heterocycl Chem. 2012;49(5):1009–1018 .
  • Aly AA, Brown AB, Abdel-Aziz M, et al. An efficient synthesis of thiazolidine-4-ones with antitumor and antioxidant activities. J Heterocycl Chem. 2012;49(4):726–731.
  • Selvakumaran N, Sandhiya L, Bhuvanesh NS, et al. Structural diversity in aroylthiourea copper complexes–formation and biological evaluation of [Cu(I)(μ-S)SCl]2, cis-Cu(II)S2O2, trans-Cu(II)S2O2 and Cu(I)S3 cores. New J Chem. 2016;40(6):5401–5413.
  • Selvakumaran N, Bhuvanesh N, Endo A, et al. Synthesis, structure, DNA and protein binding studies, and cytotoxic activity of nickel(II) complexes containing 3,3-dialkyl/aryl-1-(2,4-dichlorobenzoyl)thiourea ligands. Polyhedron. 2014;75:95–109.
  • Anuta V, Nitulescu GM, Dinu-Pîrvu CE, et al. Biopharmaceutical profiling of new antitumor pyrazole derivatives. Molecules. 2014;9(10):16381–16401.
  • Solinas A, Faure Hln, Roudaut H, et al. Acylthiourea, acylurea, and acylguanidine derivatives with potent hedgehog inhibiting activity. J Med Chem. 2012;55(4):1559–1571.
  • Károlyi BI, Bősze S, Orbán E, et al. Acylated mono-, bis- and tris-cinchona-based amines containing ferrocene or organic residues: synthesis, structure and in vitro antitumor activity on selected human cancer cell lines. Molecules. 2012;17(3):2316–2329.
  • Kowalski K. Ferrocenyl-nucleobase complexes: synthesis, chemistry and applications. Coord Chem Rev. 2016;317:132–156.
  • Snegur L, Simenel A, Rodionov A, et al. Ferrocene modification of organic compounds for medicinal applications. Russ Chem Bull Int Ed. 2014;63(1):26–36 .
  • Ornelas C. Application of ferrocene and its derivatives in cancer research. New J Chem. 2011;35(10):1973–1985.
  • Fouda MF, Abd-Elzaher MM, Abdelsamaia RA, et al. On the medicinal chemistry of ferrocene. Appl Organometal Chem. 2007;21(8):613–625.
  • Braga SS, Silva AM. A new age for iron: antitumoral ferrocenes. Organometallics. 2013;32(20):5626–5639.
  • Zhou HY, Li M, Qu J, et al. Effective antitumor candidates based upon ferrocenylseleno-dopamine derivatives: growth inhibition by induction cell apoptosis and antivascular effects. Organometallics. 2016;35(11):1866–1875.
  • Wieczorek A, Błauż A, Zakrzewski J, et al. Ferrocenyl 2, 5-piperazinediones as tubulin-binding organometallic ABCB1 and ABCG2 inhibitors active against MDR cells. ACS Med Chem Lett. 2016;7(6):612–617.
  • Panaka S, Trivedi R, Jaipal K, et al. Ferrocenyl chalcogeno (sugar) triazole conjugates: synthesis, characterization and anticancer properties. J Organomet Chem. 2016;813:125–130.
  • Lu, C., Wang X, Yang Y, et al. Ferrocenyl compounds derived from the reaction of phenylamines with ferrocenecarbonyl chloride: synthesis, characterisation and their biological activity. Inorg Chim Acta. 2016;447:121–126.
  • Yeşilkaynak T, Muslu H, Özpınar C, et al. Novel thiourea derivative and its complexes: synthesis, characterization, DFT computations, thermal and electrochemical behavior, antioxidant and antitumor activities. J Mol Struct. 2017;1142:185–193.
  • Asegbeloyin JN, Oyeka EE, Okpareke O, et al. Synthesis, structure, computational and in silico anticancer studies of N,N-diethyl-N′-palmitoylthiourea. J. Mol. Struct. 2017;1153:69–77.
  • Barolli JP, Maia PI, Colina-Vegas L, et al. Heteroleptic tris-chelate ruthenium(II) complexes of N,N-disubstituted-N′-acylthioureas: synthesis, structural studies, cytotoxic activity and confocal microscopy studies. Polyhedron. 2017;126:33–41.
  • Gunasekaran N, Vadivel V, Halcovitch NR, et al. Preparation, characterization and in vitro antioxidant and cytotoxicity studies of some 2,4-dichloro-N-[di(alkyl/aryl)carbamothioyl]benzamide derivatives. Chem Data Collec. 2017;9:263–276.
  • Colina-Vegas L, Luna-Dulcey L, Plutín AM, et al. Half sandwich Ru(II)-acylthiourea complexes: DNA/HSA-binding, anti-migration and cell death in a human breast tumor cell line. Dalton Trans. 2017;46(38):12865–12875.
  • Molter A, Kathrein S, Kircher B, et al. Anti-tumour active gold(I), palladium(II) and ruthenium(II) complexes with thio-and selenoureato ligands: a comparative study. Dalton Trans. 2018;47(14):5055–5064.
  • Pandey SK, Singh D P, Marverti G, et al. Monodentate coordination of N,N′-disubstituted thiocarbamide ligands: syntheses, structural analyses, in vitro cytotoxicity and DNA damage studies of Cu(I) complexes. ChemistrySelect. 2018;3(13):3675–3679.
  • Asghar F, Fatima S, Rana S, et al. Synthesis, spectroscopic investigation, and DFT study of N,N′-disubstituted ferrocene-based thiourea complexes as potent anticancer agents. Dalton Trans. 2018;47(6):1868–1878.
  • Qiao L, Huang J, Hu W, et al. Synthesis, characterization, and in vitro evaluation and in silico molecular docking of thiourea derivatives incorporating 4-(trifluoromethyl) phenyl moiety. J Mol Struct. 2017;1139:149–159.
  • Gemili M, Sari H, Ulger M, et al. Pt(II) and Ni(II) complexes of octahydropyrrolo-[3,4-c]-pyrrole N-benzoylthiourea derivatives: synthesis, characterization, physical parameters and biological activity. Inorg Chim Acta. 2017;463:88–96.
  • Rakhshani S, Rezvani A R, Dušek M, et al. Design and synthesis of novel thiourea metal complexes with controllable antibacterial properties. Appl Organometal Chem. 2018;32(6):e4342.
  • Plutín AM, Alvarez A, Mocelo R, et al. Palladium (II)/N,N-disubstituted-N′-acylthioureas complexes as anti-mycobacterium tuberculosis and anti-trypanosoma cruzi agents. Polyhedron. 2017;132:70–77.
  • Larik FA, Saeed A, Channar P A, et al. New 1-octanoyl-3-aryl thiourea derivatives: solvent-free synthesis, characterization and multi-target biological activities. Bangladesh J Pharmacol. 2016;11(4):894–902.
  • Nordin NA, Chai TW, Tan BL, et al. Novel synthetic monothiourea aspirin derivatives bearing alkylated amines as potential antimicrobial agents. J Chem. 2017;2017:1–7.
  • Halim A, Nadiah A, Ngaini Z. Synthesis and bacteriostatic activities of bis(thiourea) derivatives with variable chain length. J Chem. 2016;2016:1–7.
  • Mohamed NA. Abd El-Ghany N A. Pyromellitimide benzoyl thiourea cross linked carboxymethyl chitosan hydrogels as antimicrobial agents. Int J Polym Mater. 2017;66(17):861–870.
  • Fattah TA, Saeed A, Channar PA, et al. Synthesis, enzyme inhibitory kinetics and computational studies of novel 1-(2-(4-isobutylphenyl)propanoyl)-3-arylthioureas as jack bean urease inhibitors. Chem Biol Drug Des. 2018;91(2):434–447.
  • Saeed A, Rehman S, Channar P A, et al. Jack bean urease inhibitors, and antioxidant activity based on palmitic acid derived 1-acyl-3-arylthioureas: synthesis, kinetic mechanism and molecular docking studies. Drug Res. 2017;67(10):596–605.
  • Larik FA, Saeed A, Channar P A, et al. Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers. Eur J Med Chem. 2017;32:273–281.
  • Saeed A, Shah MS, Larik F A, et al. Synthesis, computational studies and biological evaluation of new 1-acetyl-3-aryl thiourea derivatives as potent cholinesterase inhibitors. Med Chem Res. 2017;26(8):1635–1646.
  • Zengin Kurt B, Sonmez F, Durdagi S, et al. Synthesis, biological activity and multiscale molecular modeling studies for coumaryl-carboxamide derivatives as selective carbonic anhydrase IX inhibitors. J Enzyme Inhib Med Chem. 2017;32(1):1042–1052.
  • Cui P, Li X, Zhu M, et al. Design, synthesis and antibacterial activities of thiouracil derivatives containing acyl thiourea as SecA inhibitors. Bioorganic Med Chem Lett. 2017;27(10):2234–2237.
  • Han Z-y, Wu W-y, Chen F-l, et al. Design, synthesis, crystal structure and insecticidal evaluation of novel arylpyrazole derivatives containing cyhalothroyl thiourea moiety. Phosphorus, Sulfur Silicon Relat Elem. 2017;192(8):911–918.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.