66
Views
0
CrossRef citations to date
0
Altmetric
Articles

Theoretical and experimental investigation on the electrochemical properties, structural and spectroscopic parameters of 6,7-dihydroxy-9-thia-1,4a-diaza fluoren-2-one (DTDFO)

, , &
Pages 598-613 | Received 03 Jan 2019, Accepted 31 May 2019, Published online: 27 Jun 2019

References

  • Hamid AZ A, Fathalla OA. Effect of some new uracil derivatives on Ehrlich ascites carcinoma cells. Egypt J Pharm Sci. 1993;34:67–67.
  • Nakamura M, Sigurdur J. The effect of antimetabolites on the growth of Endamoeba histolytica: I. Purine and pyrimidine analogs. Arch Biochem Biophys. 1957;66:183–189. doi: 10.1016/0003-9861(57)90549-0
  • Hirschberg E. Thiaxanthenones: Miracil D and hycanthone. Mechanism of action of antimicrobial and antitumor agents. Berlin: Springer; 1975. p. 274–302.
  • Wyrzykiewicz E, Bartkowiak G, Nowakowska Z, et al. Synthesis and antimicrobial properties of S-substituted derivatives of 2-thiouracil. Farmaco. 1993;48:979–988.
  • Fathalla OA, Zaghary WA, Radwan HH, et al. Synthesis of new 2-thiouracil-5-sulfonamide derivatives with biological activity. Arch Pharma Res. 2002;25:258–269. doi: 10.1007/BF02976623
  • Fathalla OA. Synthesis of new pyrazolo [1, 5-a] pyrimidine derivative using 5-aminouracil and ketene dithioacetal. Arch Pharm Res. 1999;22:571–574. doi: 10.1007/BF02975328
  • Fathalla OA, Gad HSM, Maghraby AS. Synthesis of some new uracil-5-sulphonamide-p-phenyl derivatives and their effect on Biomphalaria alexandina snails nucleoproteins. B Natl Res Cent. 2000;25:341–363.
  • Abdulla HI, El-Bermani MF. Infrared studies of tautomerism in 2-hydroxypyridine 2-thiopyridine and 2-aminopyridine. Spectrochim Acta A. 2001;57:2659–2671. doi: 10.1016/S1386-1425(01)00455-3
  • Hammes GG, Lillford PJ. Kinetic and equilibrium study of the hydrogen bond dimerization of 2-pyridone in hydrogen bonding solvents. J Am Chem Soc. 1970;92:7578–7585. doi: 10.1021/ja00729a012
  • Wrona M, Czochralska B, Shugar D. Electrochemical properties of 4-thiouracil derivatives. J Electroanal Chem. 1976;68:355–366. doi: 10.1016/S0022-0728(76)80275-6
  • Carbon J, David H, Studier HMH. Thiobases in Escherchia coli transfer RNA: 2-thiocytosine and 5-methylaminomethyl-2-thiouracil. Science. 1968;161:1146–1147. doi: 10.1126/science.161.3846.1146
  • Lipsett M N. The isolation of 4-thiouridylic acid from the soluble ribonucleic acid of Escherichia coli. J Biol Chem. 1965;240:3975–3978.
  • Sholina SI, Bogolyubskii VA, Kruglyakova KE. The antioxidant efficiency of some hydroquinone derivatives. Russ Chem Bull. 1963;12:715–718. doi: 10.1007/BF01134711
  • Shahrokhian S, Hamzehloei A. Electrochemical oxidation of catechol in the presence of 2-thiouracil: application to electro-organic synthesis. Electrochem Commun. 2003;5:706–710. doi: 10.1016/S1388-2481(03)00170-X
  • Reynolds CA, King PM, Richards WG. Computed redox potentials and the design of bioreductive agents. Nature. 1988;334:80–82. doi: 10.1038/334080a0
  • Compton RG, King PM, Reynolds CA, et al. The oxidation potential of 1, 4-diaminobenzene: calculation versus experiment. J Electroanal Chem. 1989;258:79–88. doi: 10.1016/0022-0728(89)85163-0
  • Cohen AJ, Paula MS, Weitao Y. Insights into current limitations of density functional theory. Science. 2008;321:792–794. doi: 10.1126/science.1158722
  • Wolinski K, Hinton JF, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005
  • Zhou WQ, Zhu LM, Cao ZB, et al. Theoretical and experimental study of the structure and vibration spectra of 4, 4′-carbonyl-di-morpholine. J Mol Struct. 2003;655:405–411. doi: 10.1016/S0022-2860(03)00283-7
  • Scanlon DO, Watson GW, Payne DJ, et al. Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J Phys Chem C. 2010;114:4636–4645. doi: 10.1021/jp9093172
  • Hasnip PJ, Refson K, Probert MI, et al. Density functional theory in the solid state. Philos Trans R Soc A: Math Phys Eng Sci. 2014;372(20130270):1–26.
  • Bredas JL, Heeger AJ. Influence of donor and acceptor substituents on the electronic characteristics of poly (paraphenylene vinylene) and poly (paraphenylene). Chem Phys Lett. 1994;217:507–512. doi: 10.1016/0009-2614(93)E1421-C
  • Yang LW, Eyal E, Chennubhotla C, et al. Insights into equilibrium dynamics of proteins from comparison of NMR and X-ray data with computational predictions. Structure. 2007;15:741–749. doi: 10.1016/j.str.2007.04.014
  • Bauernschmitt R, Häser M, Treutler O, et al. Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions. Chem Phys Lett. 1997;264:573–578. doi: 10.1016/S0009-2614(96)01343-7
  • Frisch M, Trucks G, Schlegel H, et al. Gaussian 03, revision C. 02. 2008.
  • Klahn M, Mathias G, Kötting C, et al. IR spectra of phosphate ions in aqueous solution: predictions of a DFT/MM approach compared with observations. J Phys Chem A. 2004;108:6186–6194. doi: 10.1021/jp048617g
  • Murthy PK, Mary YS, Panicker CY, et al. Synthesis, crystal structure analysis, spectral investigations, DFT computations and molecular dynamics and docking study of 4-benzyl-5-oxomorpholine-3-carbamide, a potential bioactive agent. J Mol Struct. 2017;1134:25–39. doi: 10.1016/j.molstruc.2016.12.037
  • Becke AD. A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys. 1993;98:1372–1377. doi: 10.1063/1.464304
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785
  • Adamo C, Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The m PW and m PW1PW models. J Chem Phys. 1998;108:664–675. doi: 10.1063/1.475428
  • O'boyle NM, Tenderholt AL, Langner KM. A library for package-independent computational chemistry algorithms. J Comput Chem. 2008;29:839–845. doi: 10.1002/jcc.20823
  • Takano YK, Houk KN. Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput. 2005;1:70–77. doi: 10.1021/ct049977a
  • Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1988;88:899–926. doi: 10.1021/cr00088a005
  • Tulyabaev AR, Kiryanov I, Samigullin IS, et al. Are there reliable DFT approaches for 13C NMR chemical shift predictions of fullerene C60 derivatives. Int J Quantum Chem. 2017;117:7–14. doi: 10.1002/qua.25299
  • Bard AJ, Faulkner LR, Leddy J, et al. Electrochemical methods: fundamentals and applications. New York: Wiley; 1980.
  • Nemamtollahi D, Goodarzi H. Electrochemical study of catechol and some of 3-substituted catechols in the presence of 1, 3-diethyl-2-thio-barbituric acid. Application to the electro-organic synthesis of new dispirothiopyrimidine derivatives. J Electroanal Chem. 2001;510:108–114. doi: 10.1016/S0022-0728(01)00553-8
  • Namazian M, Almodarresieh HA, Noorbala MR, et al. DFT calculation of electrode potentials for substituted quinones in aqueous solution. Chem Phys Lett. 2004;396:424–428. doi: 10.1016/j.cplett.2004.08.089
  • Zare HR, Namazian M, Nasirizadeh N. Electrochemical behavior of quercetin: experimental and theoretical studies. J Electroanal Chem. 2005;584:77–83. doi: 10.1016/j.jelechem.2005.07.005
  • Karthick T, Tandon P. Computational approaches to find the active binding sites of biological targets against busulfan. J Mol Model. 2016;22(142):1–9.
  • Kupka T, Gerothanassis I, Demetropoulos I. Density functional study of a model amide. Prediction of formamide geometry, dipole moment, IR harmonic vibration νCO and GIAO NMR shieldings. J Mol Struct: Theochem. 2000;531:143–157. doi: 10.1016/S0166-1280(00)00441-3
  • Pulay P, Fogarasi G, Pang F, et al. Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives. J Am Chem Soc. 1979;101:2550–2560. doi: 10.1021/ja00504a009
  • Scott AP, Radom L. Harmonic vibrational frequencies: an evaluation of Hartree−Fock, Møller− Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem. 1996;100:16502–16513. doi: 10.1021/jp960976r
  • Yamaguchi Y, Frisch M, Gaw J, et al. Analytic evaluation and basis set dependence of intensities of infrared spectra. J Chem Phys. 1986;84:2262–2278. doi: 10.1063/1.450389
  • Babu PDS, Periandy S, Mohan S, et al. Molecular structure and vibrational investigation of benzenesulfonic acid methyl ester using DFT (LSDA, B3LYP, B3PW91, and MPW1PW91) theory calculations. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2011;78:168–178. doi: 10.1016/j.saa.2010.09.017
  • Mulliken RS. Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys. 1955;23:1833–1840. doi: 10.1063/1.1740588
  • Davidson ER. Electronic population analysis of molecular wavefunctions. J Chem Phys. 1967;46:3320–3324. doi: 10.1063/1.1841219
  • Choudhary N, Bee S, Gupta A, et al. Comparative vibrational spectroscopic studies, HOMO–LUMO and NBO analysis of N-(phenyl)-2, 2-dichloroacetamide, N-(2-chloro phenyl)-2, 2-dichloroacetamide and N-(4-chloro phenyl)-2, 2-dichloroacetamide based on density functional theory. Comput Theor Chem. 2013;1016:8–21. doi: 10.1016/j.comptc.2013.04.008
  • Kosar B, Albayrak C. Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino) methyl] phenol. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2011;78:160–167. doi: 10.1016/j.saa.2010.09.016
  • Parr RG, Szentpály LV, Liu S. Electrophilicity index. J Am Chem Soc. 1999;121:1922–1924. doi: 10.1021/ja983494x
  • Barakat A, Soliman SM, Elshaier YA, et al. Molecular structure and spectroscopic investigations combined with hypoglycemic/anticancer and docking studies of a new barbituric acid derivative. J Mol Struct. 2017;1134:99–111. doi: 10.1016/j.molstruc.2016.12.072
  • Masumian E, Hashemianzadeh SM, Nowroozi A. Hydrogen adsorption on SiC nanotube under transverse electric field. Phys Lett A. 2014;378:2549–2552. doi: 10.1016/j.physleta.2014.07.001
  • Aihara J. Reduced HOMO−LUMO Gap as an index of kinetic stability for Polycyclic aromatic Hydrocarbons. J Phys Chem A. 1999;103:7487–7495. doi: 10.1021/jp990092i
  • Karunakaran V, Balachandran V. FT-IR, FT-Raman spectra, NBO, HOMO–LUMO and thermodynamic functions of 4-chloro-3-nitrobenzaldehyde based on ab initio HF and DFT calculations. Spectrochim Acta Part A: Mol and Biomol Spectrosc. 2012;98:229–239. doi: 10.1016/j.saa.2012.08.003
  • Grabowski SJ, Leszczynski J. Unrevealing the nature of hydrogen bonds: π-electron delocalization shapes H-bond features. intramolecular and intermolecular resonance-assisted hydrogen bonds. In: Hydrogen Bonding—New Insights. Dordrecht: Springer; 2006. p. 487–512.
  • Masumian E, Nowroozi A. Comparative study of resonance-inhibited hydrogen bonded (RIHB) systems with different atoms involved: the leading role of σ-planarity. Mol Phys. 2019;117:1871–1881. doi: 10.1080/00268976.2018.1557350

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.