1,348
Views
31
CrossRef citations to date
0
Altmetric
Articles

Methods for the direct synthesis of thioesters from aldehydes: a focus review

, , , , &
Pages 96-115 | Received 27 Apr 2019, Accepted 18 Aug 2019, Published online: 14 Sep 2019

References

  • Christophersen C, Anthoni U. Organic sulfur compounds from marine organisms. Sulfur Rep. 1986;4:365–442. doi: 10.1080/01961778608082487
  • Feng M, Tang B, Liang S H, et al. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr Top Med Chem. 2016;16:1200–1216. doi: 10.2174/1568026615666150915111741
  • Devendar P, Yang G-F. Sulfur-containing agrochemicals. Top Curr Chem. 2017;375:82. doi: 10.1007/s41061-017-0169-9
  • Franke J, Hertweck C. Biomimetic thioesters as probes for enzymatic assembly lines: synthesis, applications, and challenges. Cell Chem Biol. 2016;23:1179–1192. doi: 10.1016/j.chembiol.2016.08.014
  • Mullowney MW, RA M, MT R, et al. Natural products from thioester reductase containing biosynthetic pathways. Nat Prod Rep. 2018;35:847–878. doi: 10.1039/C8NP00013A
  • Geng Z, Chen B, Chiu P. Total synthesis of pseudolaric acid A. Angew Chem Int Ed. 2006;45:6197–6201. doi: 10.1002/anie.200602056
  • Kumar KA, Bavikar SN, Spasser L, et al. Total chemical synthesis of a 304 amino acid K48-linked tetraubiquitin protein. Angew Chem Int Ed. 2011;50:6137–6141. doi: 10.1002/anie.201101920
  • Aksakal S, Aksakal R, Becer CR. Thioester functional polymers. Polym Chem. 2018;9:4507–4516. doi: 10.1039/C8PY00872H
  • Kazemi M, Shiri L. Thioesters synthesis: recent adventures in the esterification of thiols. J Sulfur Chem. 2015;36:613–623. doi: 10.1080/17415993.2015.1075023
  • Hirschbeck V, Gehrtz PH, Fleischer I. Metal-catalyzed synthesis and use of thioesters: recent developments. Chem Eur J. 2018;24:7092–7107. doi: 10.1002/chem.201705025
  • Arshadi S, Vessally E, Edjlali L, et al. N-Propargylamines: versatile building blocks in the construction of thiazole cores. Beilstein J Org Chem. 2017;13:625–638. doi: 10.3762/bjoc.13.61
  • Vessally E, Didehban K, Babazadeh M, et al. Chemical fixation of CO2 with aniline derivatives: a new avenue to the synthesis of functionalized azole compounds (A review). J CO2 Util. 2017;21:480–490. doi: 10.1016/j.jcou.2017.08.013
  • Vessally E, Didehban K, Mohammadi R, et al. Recent advantages in the metal (bulk and nano)-catalyzed S-arylation reactions of thiols with aryl halides in water: a perfect synergy for eco-compatible preparation of aromatic thioethers. J Sulfur Chem. 2018;39:332–349. doi: 10.1080/17415993.2018.1436711
  • Vessally E, Mohammadi R, Hosseinian A, et al. S-arylation of 2-mercaptobenzazoles: a comprehensive review. J Sulfur Chem. 2018;39:443–463. doi: 10.1080/17415993.2018.1436712
  • Hosseinian A, Zare Fekri L, Monfared A, et al. Transition-metal-catalyzed C–N cross-coupling reactions of N-unsubstituted sulfoximines: a review. J Sulfur Chem. 2018;39:674–698. doi: 10.1080/17415993.2018.1471142
  • Hosseinian A, Nezhad PDK, Ahmadi S, et al. A walk around the decarboxylative CS cross-coupling reactions. J Sulfur Chem. 2019;40:88–112. doi: 10.1080/17415993.2018.1515314
  • Monfared A, Ahmadi S, Rahmani Z, et al. Odorless, convenient and one-pot synthesis of thioethers from organic halides and thiourea. J Sulfur Chem. 2019;40:209–231. doi: 10.1080/17415993.2018.1540699
  • Hosseinian A, Arshadi S, Sarhandi S, et al. Direct C–H bond sulfenylation of (Het) arenes using sulfonyl hydrazides as thiol surrogate: a review. J Sulfur Chem. 2019. doi: 10.1080/17415993.2019.1582654
  • Nasab FAH, Fekri LZ, Monfared A, et al. Recent advances in sulfur–nitrogen bond formation via cross-dehydrogenative coupling reactions. RSC Adv. 2018;8:18456–18469. doi: 10.1039/C8RA00356D
  • Hosseinian A, Ahmadi S, Nasab FAH, et al. Cross-dehydrogenative C–H/S–H coupling reactions. Top Curr Chem. 2018;376:39. doi: 10.1007/s41061-018-0217-0
  • Sarhandi S, Daghagheleh M, Vali M, et al. New insight in Hiyama cross-coupling reactions: decarboxylative, denitrogenative and desulfidative couplings: A review. Chem Rev Lett. 2018;1:9–15.
  • Peng W, Vessally E, Arshadi S, et al. Cross-dehydrogenative coupling reactions between C(sp)–H and X–H (X= N, P, S, Si, Sn) bonds: an environmentally benign access to heteroatom-substituted alkynes. Top Curr Chem. 2019;377(4):20. doi: 10.1007/s41061-019-0245-4
  • Arshadi S, Vessally E, Edjlali L, et al. N-Propargylic β-enaminocarbonyls: powerful and versatile building blocks in organic synthesis. RSC Adv. 2017;7:13198–13211. doi: 10.1039/C7RA00746A
  • Nejati K, Ahmadi S, Nikpassand M, et al. Diaryl ethers synthesis: nano-catalysts in carbon-oxygen cross-coupling reactions. RSC Adv. 2018;8:19125–19143. doi: 10.1039/C8RA02818D
  • Monfared A, Mohammadi R, Ahmadi S, et al. Recent advances in the application of nano-catalysts for Hiyama cross-coupling reactions. RSC Adv. 2019;9:3185–3202. doi: 10.1039/C8RA08112C
  • Hosseinian A, Mohammadi R, Ahmadi S, et al. Arylhydrazines: novel and versatile electrophilic partners in cross-coupling reactions. RSC Adv. 2018;8:33828–33844. doi: 10.1039/C8RA06423G
  • Hosseinian A, Ahmadi S, Mohammadi R, et al. Three-component reaction of amines, epoxides, and carbon dioxide: A straightforward route to organic carbamates. J. CO2 Util. 2018;27:381–389. doi: 10.1016/j.jcou.2018.08.013
  • Monfared A, Mohammadi R, Hosseinian A, et al. Cycloaddition of atmospheric CO2 to epoxides under solvent-free conditions: a straightforward route to carbonates by green chemistry metrics. RSC Adv. 2019;9:3884–3899. doi: 10.1039/C8RA10233C
  • Daghagheleh M, Vali M, Rahmani Z, et al. A review on the CO2 incorporation reactions using Arynes. Chem Rev Lett. 2018;1:23–30.
  • Hosseinian A, Farshbaf S, Fekri L Z, et al. Cross-dehydrogenative coupling reactions between P(O)–H and X–H (X = S, N, O, P) bonds. Top Curr Chem. 2018;376:23–42. doi: 10.1007/s41061-018-0200-9
  • Shahidi S, Farajzadeh P, Ojaghloo P, et al. Nanocatalysts for conversion of aldehydes/alcohols/amines to nitriles: a review. Chem Rev Lett. 2018;1:37–44.
  • Farshbaf S, Zare Fekri L, Nikpassand M, et al. Dehydrative condensation of β-aminoalcohols with CO2: an environmentally benign access to 2-oxazolidinone derivatives. J CO2 Util. 2018;25:194–204. doi: 10.1016/j.jcou.2018.03.020
  • Mohammadi S, Musavi M, Abdollahzadeh F, et al. Application of nanocatalysts in C-Te cross-coupling reactions: an overview. Chem Rev Lett. 2018;1:49–55.
  • Vessally E, Hosseinian A, Edjlali L, et al. New strategy for the synthesis of morpholine cores: synthesis from N-propargylamines. Iran J Chem Chem Eng. 2017;36:1–13.
  • Farshbaf S, Sreerama L, Khodayari T, et al. Propargylic ureas as powerful and versatile building blocks in the synthesis of various key medicinal heterocyclic compounds. Chem Rev Lett. 2018;1:56–67.
  • Hosseinian A, Farshbaf S, Fekri LZ, et al. Cross-dehydrogenative coupling reactions between P(O)–H and X–H (X = S, N, O, P) bonds. Top Curr Chem. 2018;376:23. doi: 10.1007/s41061-018-0200-9
  • Yi CL, Huang YT, Lee CF. Synthesis of thioesters through copper-catalyzed coupling of aldehydes with thiols in water. Green Chem. 2013;15:2476–2484. doi: 10.1039/c3gc40946e
  • Huang YT, Lu SY, Yi CL, et al. Iron-catalyzed synthesis of thioesters from thiols and aldehydes in water. J Org Chem. 2014;79:4561–4568. doi: 10.1021/jo500574p
  • Jhuang HS, Liu YW, Reddy DM, et al. Microwave-assisted synthesis of thioesters from aldehydes and thiols in water. J Chin Chem Soc. 2018;65:24–27. doi: 10.1002/jccs.201700045
  • Brandolese A, Ragno D, Di Carmine G, et al. Aerobic oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid and its derivatives by heterogeneous NHC-catalysis. Org Biomol Chem. 2018;16(46):8955–8964. doi: 10.1039/C8OB02425A
  • Bandgar SB, Bandgar BP, Korbad BL, et al. Dess–martin periodinane mediated synthesis of thioesters from aldehydes. Tetrahedron Lett. 2007;48:1287–1290. doi: 10.1016/j.tetlet.2006.12.024
  • Uno T, Inokuma T, Takemoto Y. NHC-catalyzed thioesterification of aldehydes by external redox activation. Chem Commun. 2012;48:1901–1903. doi: 10.1039/c2cc17183j
  • Ji M, Wang X, Lim YN, et al. N-heterocyclic carbene catalysed oxidative coupling of aldehydes with alcohols/thiols and one-pot oxidation/esterification of allylic alcohols. Eur J Org Chem. 2013;35:7881–7885. doi: 10.1002/ejoc.201301337
  • Zhu X, Shi Y, Mao H, et al. Tetraethylammonium bromide-catalyzed oxidative thioesterification of aldehydes and alcohols. Adv Synth Catal. 2013;355:3558–3562. doi: 10.1002/adsc.201300584
  • Ogawa KA, Boydston AJ. Organocatalyzed anodic oxidation of aldehydes to thioesters. Org Lett. 2014;16:1928–1931. doi: 10.1021/ol500459x
  • Chung J, Seo UR, Chun S, et al. Poly (3, 4-dimethyl-5-vinylthiazolium)/DBU-catalyzed thioesterification of aldehydes with thiols. Chem Cat Chem. 2016;8:318–321.
  • Kwon YD, La MT, Kim HK. Aerobic oxidative esterification and thioesterification of aldehydes using dibromoisocyanuric acid under mild conditions: no metal catalysts required. New J Chem. 2018;42:10833–10841. doi: 10.1039/C8NJ01085D
  • Takagi M, Goto S, Matsuda T. Photo-reaction of lipoic acid and related organic disulphides: reductive acylation with aldehydes. J Chem Soc Chem Commun. 1976;3:92–93. doi: 10.1039/c39760000092
  • Takagi M, Goto S, Tazaki M, et al. The reductive acylation of organic disulfides with aldehydes under photochemical and radical conditions. Bull Chem Soc Jpn. 1980;53:1982–1987. doi: 10.1246/bcsj.53.1982
  • Nambu H, Hata K, Matsugi M, et al. The direct synthesis of thioesters using an intermolecular radical reaction of aldehydes with dipentafluorophenyl disulfide in water. Chem Commun. 2002;10:1082–1083. doi: 10.1039/b202129c
  • Nambu H, Hata K, Matsugi M, et al. Efficient synthesis of thioesters and amides from aldehydes by using an intermolecular radical reaction in water. Chem Eur J. 2005;11:719–727. doi: 10.1002/chem.200400754
  • Singh S, Yadav LD. The direct thioesterification of aldehydes with disulfides via NHC-catalyzed carbonyl umpolung strategy. Tetrahedron Lett. 2012;53:5136–5140. doi: 10.1016/j.tetlet.2012.07.042
  • Zeng JW, Liu YC, Hsieh PA, et al. Metal-free cross-coupling reaction of aldehydes with disulfides by using DTBP as an oxidant under solvent-free conditions. Green Chem. 2014;16:2644–2652. doi: 10.1039/C4GC00025K
  • Zheng X, Fu W, Xiong J, et al. Zeolite Beta nanoparticles assembled Cu catalysts with superior catalytic performances in the synthesis of thioesters by cross-coupling of aldehydes and disulfides. Catal Today. 2016;264:152–157. doi: 10.1016/j.cattod.2015.07.010
  • Wang J, Sánchez-Roselló M, Aceña JL, et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem Rev. 2013;114:2432–2506. doi: 10.1021/cr4002879
  • Fujiwara T, O’Hagan D. Successful fluorine-containing herbicide agrochemicals. J Fluorine Chem. 2014;167:16–29. doi: 10.1016/j.jfluchem.2014.06.014
  • Gouverneur V, Seppelt K. Introduction: fluorine chemistry. Chem Rev 2015;115:563–565. doi: 10.1021/cr500686k
  • Gillis EP, Eastman KJ, Hill MD, et al. Applications of fluorine in medicinal chemistry. J Med Chem. 2015;58:8315–8359. doi: 10.1021/acs.jmedchem.5b00258
  • Monfared A, Ebrahimiasl S, Babazadeh M, et al. Recent advances in decarboxylative Trifluoromethyl (thiol) ation of carboxylic acids. J Fluorine Chem. 2019;220:24–34. doi: 10.1016/j.jfluchem.2019.02.001
  • Hosseinian A, Sadeghi YJ, Ebrahimiasl S, et al. Recent trends in direct mono-, di-, and tri-fluoromethyl (thiol) ation of SH bonds. J Sulfur Chem. 2019. doi: 10.1080/17415993.2019.1598410
  • Pannecoucke X, Besset T. Use of ArSO2SR f reagents: an efficient tool for the introduction of SR f moieties. Org Biomol Chem. 2019;17:1683–1693. doi: 10.1039/C8OB02995D
  • Guo SH, Zhang XL, Pan GF, et al. Synthesis of difluoromethylthioesters from aldehydes. Angew Chem Int Ed. 2018;57:1663–1667. doi: 10.1002/anie.201710731
  • Guo SH, Wang MY, Pan GF, et al. Synthesis of monofluoromethylthioesters from aldehydes. Adv Synth Catal. 2018;360:1861–1869. doi: 10.1002/adsc.201800136
  • Xu B, Li D, Lu L, et al. Radical fluoroalkylthiolation of aldehydes with PhSO2SRf (Rf= CF3, C2F5, CF2H or CH2F): a general protocol for the preparation of fluoroalkylthioesters. Org Chem Front 2018;5:2163–2166. doi: 10.1039/C8QO00327K
  • Kurauchi M, Imamoto T, Yokoyama M. A novel disproportionation reaction of aromatic aldehydes involving C-C bond formation. Tetrahedron Lett. 1981;22:4985–4986. doi: 10.1016/S0040-4039(01)92398-6
  • Inoue T, Takeda T, Kambe N, et al. Synthesis of thiol, selenol, and tellurol esters from aldehydes by the reaction with iBu2AlYR (Y = S, Se, Te). J Org Chem. 1994;59:5824–5827. doi: 10.1021/jo00098a053
  • Mukherjee S, Patra T, Glorius F. Cooperative catalysis: a strategy to synthesize trifluoromethyl-thioesters from aldehydes. ACS Catal. 2018;8:5842–5846. doi: 10.1021/acscatal.8b01519

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.