170
Views
4
CrossRef citations to date
0
Altmetric
Articles

Electrochemical synthesis of hydroxy-thioxo-imidazole carboxylates: an experimental and theoretical study

ORCID Icon, , , , , , & show all
Pages 117-129 | Received 02 Oct 2019, Accepted 09 Nov 2019, Published online: 22 Nov 2019

References

  • Elinson MN, Sokolova OO, Korshunov AD, et al. Electrocatalytic cascade reaction of aldehydes and 4-hydroxy-6-methyl-2H-pyran-2-one. Electrocatalysis. 2018;9:602–607. doi: 10.1007/s12678-018-0470-6
  • Utley JHP, Folmer-Nielsen M, Wyatt PW. Organic electrochemistry. In: Hammerich O, Speiser B, editors. Electrogenerated bases and nucleophiles. 5th ed. CRC Press, Taylor and Francis; 2016. p. 1625–1656. Chapter 43.
  • Sbei N, Batanero B, Barba F, et al. A convenient synthesis of new biological active 5-imino-4-thioxo-2-imidazolidinones involving acetonitrile electrogenerated base. Tetrahedron. 2015;71:7654–7657. doi: 10.1016/j.tet.2015.07.066
  • Sbei N, Haouas B, Batanero B, et al. EGB-promoted electrochemical synthesis of 6-thioxo-[1,3,5]-triazinane-2,4 dione derivatives. Synth Commun. 2016: 46673–46677.
  • Haouas B, Saied T, Ayari H. Electrogenerated base-promoted synthesis and antimicrobial activity of 2-imino-1,3-thiazolidin-4-one derivatives. J Sulfur Chem. 2016;37:391–400. doi: 10.1080/17415993.2016.1155588
  • Sbei N, Haouas B, Chebbi M, et al. A convenient synthesis of alkyl-2-(2-imino-4-oxothiazolidin-5-ylidene)acetate derivatives involving an electrogenerated base of acetonitrile. J Sulfur Chem. 2016;38:152–162. doi: 10.1080/17415993.2016.1259416
  • Haouas B, Sbei N, Ayari H, et al. Efficient synthetic procedure to new 2-imino-1,3-thiazolines and thiazolidin-4-ones promoted by acetonitrile electrogenerated base. New J Chem. 2018;42:11776–11781. doi: 10.1039/C8NJ01992D
  • Sbei N, Batanero B, Barba F, et al. Facile preparation of 3-substituted 2-quinazolinones via electrogenerated base. Tetrahedron. 2018;74:2068–2072. doi: 10.1016/j.tet.2018.03.010
  • Hamrouni K, Saied T, El Abed N. Electrogenerated base-promoted synthesis and antimicrobial activity of 2-(1,3-dithian-2-ylidene)-2-arylacetonitrile and 2-(1,3-dithiolan-2-ylidene)-2-arylacetonitrile. J Sulfur Chem. 2015;36:196–206. doi: 10.1080/17415993.2015.1005620
  • Hamrouni K, Barba F, Benkhoud ML, et al. Stereoselective cyclopropanation to homoquinones from phenacyl carbenes obtained through Quinone-electrogenerated bases. J Org Chem. 2017;82:6778–6785. doi: 10.1021/acs.joc.7b00925
  • Majumdar KC, Chattopadhyay SK. Heterocycles in Natural Product Synthesis, Wiley-VCH, Weinheim; 2011. p. 507–533.
  • Siddiqui S, Narkhede U, Palimkar S, et al. Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or α-hydroxyketone. Tetrahedron. 2005;61:3539–3546. doi: 10.1016/j.tet.2005.01.116
  • IIina IG, Kazennova NB, Bakhmut-skaya VG, et al. Synthesis of some thioxoimidazole structures of the quinoline andindole series. Chem Heterocycl Compd. 1973;9:1028–1030. doi: 10.1007/BF00471724
  • Bano Q, Tiwari N, Giri S. Synthesis and fungicidal activities of 3-aryloxymethyl-6- substituted 1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazoles. Indian J Chem. 1992;31B:467–469.
  • Baizer MM, Chruma JL. Electrolytic reductive coupling. XXI. Reduction of organic halides in the presence of electrophiles. J Org Chem. 1972;37:1951–1960. doi: 10.1021/jo00977a020
  • Tissaoui K, Raouafi N, Boujlel KJ. Electrogenerated base-promoted synthesis of N-benzylic rhodanine and carbamodithioate derivatives. Sulfur Chem. 2010;31:41–45. doi: 10.1080/17415990903191752
  • Mathews WS, Bares JE, Bartmess JE, et al. Equilibrium acidities of carbon acids. VI. Establishment of an absolute scale of acidities in dimethyl sulfoxide solution. J Am Chem Soc. 1975;97:7006–7014. doi: 10.1021/ja00857a010
  • Feller DJ. The role of databases in support of computational chemistry calculations. Comp Chem. 1996;17:1571–1586. doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
  • Aleksandr Marenich V, Christopher Cramer J, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113:6378–6396. doi: 10.1021/jp810292n

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.