236
Views
23
CrossRef citations to date
0
Altmetric
Articles

Synthesis and DFT calculations of linear and nonlinear optical responses of novel 2-thioxo-3-N,(4-methylphenyl) thiazolidine-4 one

, , ORCID Icon, , , & show all
Pages 310-325 | Received 15 Oct 2019, Accepted 22 Feb 2020, Published online: 09 Mar 2020

References

  • Patel AB, Kumari P. Recent advances in the biological importance of rhodanine derivatives. Scope of selective heterocycles from organic and pharmaceutical perspective, Ravi Varala, IntechOpen; 2016.
  • Tissaoui K, Raouafi N, Boujlel K. Electrogenerated base-promoted synthesis of N-benzylic rhodanine and carbamodithioate derivatives. J. Sulfur Chem. 2010;31:41–48. doi: 10.1080/17415990903191752
  • Dobara MIA, Omar NF, Diab M, et al. Allyl rhodanine azo dye derivatives: potential antimicrobials target d-alanyl carrier protein ligase and nucleoside diphosphate kinase. J Cell Biochem. 2019;120:1667–1678. doi: 10.1002/jcb.27473
  • Chauhan D, George G, Sridhar SNC, et al. Design, synthesis, biological evaluation, and molecular modeling studies of rhodanine derivatives as pancreatic lipase inhibitors. Arch Pharm Chem Life Sci. 2019;352:1900029. doi: 10.1002/ardp.201900029
  • Redemann CE, Icke RN, Alles GA. Rhodanine. Org Synth. 1947;27:73–75. doi: 10.15227/orgsyn.027.0073
  • Nencki M. Ueber die einwirkung der monochloressigsaure auf sulfocyansaure und ihre Salze. J Prakt Chem. 1877;16:1–17. doi: 10.1002/prac.18770160101
  • Okasha RM, Alsehli M, Ihmaid S, et al. First example of Azo-Sulfa conjugated chromene moieties: synthesis, characterization, antimicrobial assessment, docking simulation as potent class I histone deacetylase inhibitors and antitumor agents. Bioorg Chem. 2019;92:103262. doi: 10.1016/j.bioorg.2019.103262
  • Sortino M, Delgado P, Juárez S, et al. Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorg Med Chem. 2007;15:484–494. doi: 10.1016/j.bmc.2006.09.038
  • Gonzalez E, Ortiz CA, Braulio AI. Rhodanine-based light–harvesting sensitizers: a rational comparison between 2–(1, 1–dicyanomethylene) rhodanine and Rhodanine–3–acetic acid. New J Chem. 2019;43:8781–8787. doi: 10.1039/C9NJ00939F
  • Darwish AAA, Aboraiac AM, Soldatov AV, et al. Deposition of Rhodamine B dye on flexible substrates for flexible organic electronic and optoelectronic: optical spectroscopy by Kramers–Kronig analysis. Opt Mater. 2019;95:109219. doi: 10.1016/j.optmat.2019.109219
  • Rahdar A, Salmani S, Sahoo D. Effect of the reverse micelle and oil content in reverse micelle on nonlinear optical properties of Rhodamine B. J Mol Struct. 2019;1191:237–243. doi: 10.1016/j.molstruc.2019.04.083
  • Alnayli RS, Shanon ZS, Hadi AS. Study the linear and nonlinear optical properties for laser dye Rhodamine B. J Phys:Conf Ser. 2019;1234:01202.
  • Ahmed AA, Domingo LR. Structure, reactivity, nonlinear optical properties and vibrational study of 5–Thioxo–1,4–thiazaolidin–3–one and 5–thioxo–1,4,2–thiazasilolidin–3–one (silicon vs. carbon). A DFT study. Silicon. 2019;11:2135–2147. doi: 10.1007/s12633-018-0036-5
  • Zhou J, Yang W, Yin Y, et al. Nonlinear temperature calibration equation for Rhodamine B in different solutions for wide-temperature-range applications. Appl Optics. 2019;58:1514–1518. doi: 10.1364/AO.58.001514
  • Shkir M, Muhammad S, AlFaify S, et al. Investigation on the key features of D-π-A type novel chalcone derivative for optoelectronic applications. RSC Adv. 2015;5:87320–87332. doi: 10.1039/C5RA13494C
  • Muhammad S, Al-Sehemi AG, Pannipara M, et al. Design, characterization and nonlinear optical properties of coumarin appended chalcones: use of a dual approach. Optik (Stuttg). 2018;164:5–15. doi: 10.1016/j.ijleo.2018.02.112
  • Muhammad S, Kumar S, Koh J, et al. Synthesis, characterisation, optical and nonlinear optical properties of thiazole and benzothiazole derivatives: a dual approach. Mol Simulat. 2018;44:1191–1199. doi: 10.1080/08927022.2018.1475737
  • Ahn J, Oh S, Lee H, et al. Simple and versatile non–fullerene acceptor based on benzothiadiazole and rhodanine for organic solar cells. ACS Appl Mater Interfaces. 2019;11:30098–30107. doi: 10.1021/acsami.9b09256
  • Jadhav MM, Chowdhury TH, Bedja I, et al. Near IR emitting novel rhodanine–3–acetic acid based two donor–π–acceptor sensitizers for DSSC: synthesis and application. Dyes Pigm. 2019;165:391–399. doi: 10.1016/j.dyepig.2019.02.045
  • Vinayakumara DR, Kumar S, Adhikaria AV. Supramolecular columnar self–assembly of wedge–shaped rhodanine based dyes: synthesis and optoelectronic properties. J Mol Liq. 2019;274:215–222. doi: 10.1016/j.molliq.2018.10.139
  • Thamaraiselvi P, Duraipandy N, Kiran MS, et al. Triarylamine rhodanine derivatives as red emissive sensor for discriminative detection of Ag+ and Hg2+ ions in buffer–free aqueous solutions. ACS Sustainable Chem Eng. 2019;7:9865–9874. doi: 10.1021/acssuschemeng.9b00417
  • Pascal S, Getmanenko YA, Zhang Y, et al. Design of near–infrared–absorbing unsymmetrical polymethine dyes with large quadratic hyperpolarizabilities. Chem Mater. 2018;30:3410–3418. doi: 10.1021/acs.chemmater.8b00960
  • Kang H, Facchetti A, Jiang H. Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid–state and solution–phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies. J Am Chem Soc. 2007;129:3267–3286. doi: 10.1021/ja0674690
  • Cleuvenbergen SV, Asselberghs I, Vanormelingen W, et al. Record-high hyperpolarizabilities in conjugated polymers. J Mater Chem C. 2014;2:4533–4538. doi: 10.1039/C4TC00616J
  • Clays K, Wu M, Persoons A. Femtosecond hyper–Rayleigh scattering study of spatial orientational correlations between chromophores. J Nonlin Opt Phys Mat. 1996;5:59–71. doi: 10.1142/S0218863596000076
  • Olbrechts G, Put EJH, Van Steenwinckel D, et al. Study of domain formation and relaxation in thin polymeric films by femtosecond hyper–Rayleigh scattering. J Opt Soc Am B. 1998;15:369–378. doi: 10.1364/JOSAB.15.000369
  • Matsuda N, Olbrechts G, Put EJH, et al. Comparison between optical nonlinearity relaxation times from coherent second-harmonic generation and from incoherent hyper-Rayleigh scattering. Appl Phys Lett. 1996;69:4145–4147. doi: 10.1063/1.117841
  • Dolgonos A, Mason TO, Poeppelmeier KR. Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method. J Solid State Chem. 2016;240:43–48. doi: 10.1016/j.jssc.2016.05.010
  • Viezbicke BD, Patel S, Davis BE, et al. III, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys Status Solidi. 2015;252:1700–1710. doi: 10.1002/pssb.201552007
  • Bouzourâa MB, Battie Y, En Naciri A, et al. N2+ ion bombardment effect on the band gap of anatase TiO2 ultrathin films. Opt Mater. 2019;88:282–288. doi: 10.1016/j.optmat.2018.11.045
  • Ibrahim A, Al-Ani SK. Models of optical absorption in amorphous semiconductors at the absorption edge–a review and re-evaluation. Czech J Phys. 1994;44:785–797. doi: 10.1007/BF01700645
  • Becke AD. Density–functional exchange–energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian09, revision C.01. Wallingford (CT): Gaussian Inc; 2009.
  • Dennington R, Keith T, Millam JM. Gaussview version 5. Shawnee Mission (KS): SemichemInc; 2009.
  • Shkir M, Muhammad S, AlFaify S, et al. A comparative study of key properties of glycine glycinium picrate (GGP) and glycinium picrate (GP): a combined experimental and quantum chemical approach. J Saudi Chem Soc. 2018;22:352–362. doi: 10.1016/j.jscs.2016.05.003
  • Tran F, Blaha P, Schwarz K, et al. Hybrid exchange-correlation energy functionals for strongly correlated electrons: applications to transition-metal monoxides. Phys Rev B. 2006;74:155108. doi: 10.1103/PhysRevB.74.155108
  • Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011
  • Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x
  • Zhao Y, Truhlar DG. Density functional for spectroscopy: no long–range self–interaction error, good performance for Rydberg and charge–transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A. 2006;110:13126–13130. doi: 10.1021/jp066479k
  • Muhammad S, Chaudhry AR, Al-Sehemi AG. A comparative analysis of the optical and nonlinear optical properties of cross–shaped chromophores: quantum chemical approach. Optik (Stuttg). 2017;147:439–445. doi: 10.1016/j.ijleo.2017.08.104
  • Ioannou AG, Colwell SM, Amos RD. The calculation of frequency-dependent polarizabilities using current density functional theory. Chem Phys Lett. 1997;278:278–284. doi: 10.1016/S0009-2614(97)00978-0
  • Hadji D, Rahmouni A. Molecular structure, linear and nonlinear optical properties of some cyclic phosphazenes: a theoretical investigation. J Mol Struct. 2016;1106:343–351. doi: 10.1016/j.molstruc.2015.10.033
  • Bersohn R, Pao YH, Frisch HL. Double quantum light scattering by molecules. J Chem Phys. 1966;45:3184–3198. doi: 10.1063/1.1728092
  • Kulinich AV, Ishchenko AA. Structures and fluorescence spectra of merocyanine dyes in polymer films. J Appl Spectrosc. 2019;86:35–42. doi: 10.1007/s10812-019-00777-6
  • Adamo C, Cossi M, Scalmani G, et al. Accurate static polarizabilities by density functional theory: assessment of the PBE0 model. Chem Phys Lett. 1999;307:265–271. doi: 10.1016/S0009-2614(99)00515-1
  • Sabirov DS. Polarizability of C60 fullerene dimer and oligomers: the unexpected enhancement and its use for rational design of fullerene–based nanostructures with adjustable properties. RSC Adv. 2013;3:19430–19439. doi: 10.1039/c3ra42498g
  • Thakkar AJ, Wu T. How well do static electronic dipole polarizabilities from gas-phase experiments compare with density functional and MP2 computations? J Chem Phys. 2015;143:144302. doi: 10.1063/1.4932594
  • Hornberger K, Gerlich S, Ulbricht H, et al. Theory and experimental verification of Kapitza-Dirac-Talbot-Lau interferometry. New J Phys. 2009;11:043032. doi: 10.1088/1367-2630/11/4/043032
  • Sabirov DS, Bulgakov RG. Polarizability of oxygen-containing fullerene derivatives C60On and C70O with epoxide/oxidoannulene moieties. Chem Phys Lett. 2011;506:52–56. doi: 10.1016/j.cplett.2011.02.040
  • Ledoux I, Zyss J. Influence of the molecular environment in solution measurement of the second order optical susceptibility for the urea and derivatives. Chem Phys. 1982;73:203–213. doi: 10.1016/0301-0104(82)85161-6
  • Bureš F. Fundamental aspects of property tuning in push–pull molecules. RSC Adv. 2014;4:58826–58851. doi: 10.1039/C4RA11264D
  • Anbarasan R, Dhandapani A, Manivarman S, et al. Synthesis and spectroscopical study of rhodanine derivative using DFT approaches. Spectroc Acta A. 2015;146:261–272. doi: 10.1016/j.saa.2015.02.097
  • Dalton L. Nonlinear optical polymeric materials: from chromophore design to commercial applications. Adv Polym Sci. 2002;158:1–86. doi: 10.1007/3-540-44608-7_1
  • Hadji D, Champagne B. First principles investigation of the polarizability and first hyperpolarizability of anhydride derivatives. Chemistry Africa. 2019;2:443–453. doi: 10.1007/s42250-019-00060-3
  • Svetlichnyi VA, Ishchenko AA, Vaitulevich EA, et al. Nonlinear optical characteristics and lasing ability of merocyanine dyes having different solvatochromic behaviour. Opt Commun. 2008;281:6072–6079. doi: 10.1016/j.optcom.2008.09.067
  • Hadji D, Brahim H. Structural, optical and nonlinear optical properties and TD–DFT analysis of heteroleptic bis–cyclometalated iridium(III) complex containing 2–phenylpyridine and picolinate ligands. Theor Chem Accounts. 2018;137:180. doi: 10.1007/s00214-018-2396-8
  • Hadji D, Rahmouni A, Hammoutène D, et al. First theoretical study of linear and nonlinear optical properties of diphenyl ferrocenyl butene derivatives. J Mol Liq. 2019;286:110939. doi: 10.1016/j.molliq.2019.110939
  • Hadji D, Rahmouni A. Theoretical study of nonlinear optical properties of some azoic dyes. Mediterr J Chem. 2015;4:185–192. doi: 10.13171/mjc.4.4.2015.15.07.22.50/hadji
  • Muhammad S, Al-Sehemi AG, Irfan A, et al. Tuning the push–pull configuration for efficient second-order nonlinear optical properties in some chalcone derivatives. J Mol Graph Model. 2016;68:95–105. doi: 10.1016/j.jmgm.2016.06.012
  • Muhammad S, Abdullah G, Zhongmin A, et al. First principles study for the key electronic, optical and nonlinear optical properties of novel donor-acceptor chalcones. J Mol Graph Model. 2016;22:1–9. doi: 10.1007/s00894-015-2876-x
  • Muhammad S, Al-Sehemi AG, Irfan A, et al. The substitution effect of heterocyclic rings to tune the optical and nonlinear optical properties of hybrid chalcones: a comparative study. J Mol Graph Model. 2018;81:25–31. doi: 10.1016/j.jmgm.2018.02.005
  • Muhammad S, Irfan A, Shkir M, et al. How does hybrid bridging core modification enhance the nonlinear optical properties in donor-π-acceptor configuration? A case study of dinitrophenol derivatives. J Comput Chem. 2015;36:118–128. doi: 10.1002/jcc.23777

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.