52
Views
7
CrossRef citations to date
0
Altmetric
Articles

Binuclear iron butane-1,2-dithiolate compounds with cyclohexyldiphenylphosphine or dicyclohexylphenylphosphine: Synthetic, spectroscopic, crystal structural, and electrochemical studies

, , , , &
Pages 435-445 | Received 25 Jan 2020, Accepted 04 Mar 2020, Published online: 22 Mar 2020

References

  • Evans DJ, Pickett CJ. Chemistry and the hydrogenases. Chem Soc Rev. 2003;32:268–275. doi: 10.1039/b201317g
  • Gloaguen F, Rauchfuss TB. Small molecule mimics of hydrogenases: hydrides and redox. Chem Soc Rev. 2009;38:100–108. doi: 10.1039/B801796B
  • Tard C, Pickett CJ. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem Rev. 2009;109:2245–2274. doi: 10.1021/cr800542q
  • Rauchfuss TB. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc Chem Res. 2015;48:2107–2116. doi: 10.1021/acs.accounts.5b00177
  • Li Y, Rauchfuss TB. Synthesis of diiron(I) dithiolato carbonyl complexes. Chem Rev. 2016;116:7043–7077. doi: 10.1021/acs.chemrev.5b00669
  • Peters JW, Lanzilotta WN, Lemon BJ, et al. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science. 1998;282:1853–1857. doi: 10.1126/science.282.5395.1853
  • Nicolet Y, Piras C, Legrand P, et al. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe dinuclear center. Structure. 1999;7:13–23. doi: 10.1016/S0969-2126(99)80005-7
  • Nicolet Y, de Lacey AL, Vernède X, et al. Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc. 2001;123:1596–1601. doi: 10.1021/ja0020963
  • Fan HJ, Hall MB. A capable bridging ligand for Fe-only hydrogenase: density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen. J Am Chem Soc. 2001;123:3828–3829. doi: 10.1021/ja004120i
  • Lyon EJ, Georgakaki IP, Reibenspies JH, et al. Carbon monoxide and cyanide ligands in a classical organometallic complex model for Fe-only hydrogenase. Angew Chem Int Ed. 1999;38:3178–3180. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4
  • Lawrence JD, Li H, Rauchfuss TB, et al. Diiron azadithiolates as models for the iron-only hydrogenase active site: synthesis, structure, and stereoelectronics. Angew Chem Int Ed. 2001;40:1768–1771. doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E
  • Razavet M, Davies SC, Hughes DL, et al. {2fe3s} clusters related to the di-iron sub-site of the H-centre of all-iron hydrogenases. Chem Commun. 2001: 847–848. doi: 10.1039/b102244j
  • Li H, Rauchfuss TB. Iron carbonyl sulfides, formaldehyde, and amines condense to give the proposed azadithiolate cofactor of the Fe-only hydrogenases. J Am Chem Soc. 2002;124:726–727. doi: 10.1021/ja016964n
  • Gao W, Ekström J, Liu J, et al. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction. Inorg Chem. 2007;46:1981–1991. doi: 10.1021/ic0610278
  • Schmidt M, Contakes SM, Rauchfuss TB. First generation analogues of the binuclear site in the Fe-only hydrogenases: Fe2(μ-SR)2(CO)4(CN)22−. J Am Chem Soc. 1999;121:9736–9737. doi: 10.1021/ja9924187
  • Zhang X, Zhang T, Li B, et al. Direct synthesis of phenol by novel [FeFe]-hydrogenase model complexes as catalysts of benzene hydroxylation with H2O2. RSC Adv. 2017;7:2934–2943. doi: 10.1039/C6RA27831K
  • Zhang X, Zhang T, Li Y, et al. Bio-inspired catalyst: [(μ-(SCH(CH2CH3)CH2S))Fe(CO)5]2(μ,k1,k1-DPPF) for proton reduction and phenol hydroxylation. Chemistryselect. 2017;2:9407–9411. doi: 10.1002/slct.201701449
  • Liu HM, Wang LH, Li X, et al. Diiron butane-1,2-dithiolate complexes with tris(4-chlorophenyl)phosphine or tris(4-methoxyphenyl)phosphine: synthesis, characterization, X-ray crystal structures, and electrochemistry. Phosphorus Sulfur Silicon Related Elements. 2020;195:249–255. doi: 10.1080/10426507.2019.1686375
  • Zhao PH, Li XH, Liu YF, et al. Facile synthesis, X-ray analysis, and spectroscopic studies of di-iron propanedithiolate complexes with tris(aromatic) phosphine ligands. J Coord Chem. 2014;67:766–778. doi: 10.1080/00958972.2014.903329
  • Chen FY, He J, Yu XY, et al. Electrocatalytic properties of diiron ethanedithiolate complexes containing benzoate ester. Appl Organomet Chem. 2018;32:e4549. doi: 10.1002/aoc.4549
  • Lin HM, Li JR, Mu C, et al. Synthesis, characterization, and electrochemistry of monophosphine-containing diiron propane-1,2-dithiolate complexes related to the active site of [FeFe]-hydrogenases. Appl Organomet Chem. 2019;33:e5196.
  • Wang Z, He J, Lü S, et al. Monophosphine-substituted diiron azadithiolate complexes: new syntheses, characterization and electrochemical properties. Appl Organomet Chem. 2019;33:e5184.
  • Ghosh S, Hogarth G, Hollingsworth N, et al. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Dalton Trans. 2013;42:6775–6792. doi: 10.1039/c3dt50147g
  • He J, Deng CL, Li Y, et al. A new route to the synthesis of phosphine-substituted diiron aza- and oxadithiolate complexes. Organometallics. 2017;36:1322–1330. doi: 10.1021/acs.organomet.7b00040
  • Li P, Wang M, He C, et al. Influence of tertiary phosphanes on the coordination configurations and electrochemical properties of iron hydrogenase model complexes: crystal structures of [(μ-S2C3H6)Fe2(CO)6–nLn] (L = PMe2Ph, n = 1, 2; PPh3, P(OEt)3, n = 1). Eur J Inorg Chem. 2005; 2005:2506–2513. doi: 10.1002/ejic.200400947
  • Chen FY, He J, Mu C, et al. Synthesis and characterization of five diiron ethanedithiolate complexes with acetate group and phosphine ligands. Polyhedron. 2019;160:74–82. doi: 10.1016/j.poly.2018.12.027
  • Li YL, Ma ZY, He J, et al. Aminophosphine-substituted diiron dithiolate complexes: synthesis, crystal structure, and electrocatalytic investigation. J Organomet Chem. 2017;851:14–21. doi: 10.1016/j.jorganchem.2017.09.014
  • Li RX, Liu XF, Liu T, et al. Electrocatalytic properties of [FeFe]-hydrogenases models and visible-light-driven hydrogen evolution efficiency promotion with porphyrin functionalized graphene nanocomposite. Electrochim Acta. 2017;237:207–216. doi: 10.1016/j.electacta.2017.03.216
  • Yan L, Hu MY, Mu C, et al. Synthesis, characterization, and electrochemistry of five diiron propane-1,3-dithiolate complexes with substituted phosphine ligands. J Coord Chem. 2019;72:2499–2516. doi: 10.1080/00958972.2019.1672048
  • Ghosh S, Hogarth G, Hollingsworth N, et al. Hydrogenase biomimetics: Fe2(CO)4(μ-dppf)(μ-pdt) (dppf = 1,1’-bis(diphenylphosphino)ferrocene) both a proton-reduction and hydrogen oxidation catalyst. Chem Commun. 2014;50:945–947. doi: 10.1039/C3CC46456C
  • Li QL, Lü S, Zhang RF, et al. Substitution reactions of diiron diselenolato complex with bisphosphine ligands. Polyhedron. 2019;160:255–260. doi: 10.1016/j.poly.2018.12.044
  • Zhao PH, Ma ZY, Hu MY, et al. PNP-chelated and -bridged diiron dithiolate complexes Fe2(μ-pdt)(CO)4{(Ph2P)2NR} together with related monophosphine complexes for the [2Fe]H subsite of [FeFe]-hydrogenases: preparation, structure, and electrocatalysis. Organometallics. 2018;37:1280–1290. doi: 10.1021/acs.organomet.8b00030
  • Hu MY, Yan L, Li JR, et al. Reactions of Fe2(μ-odt)(CO)6 (odt = 1, 3-oxadithiolate) with small bite-angle diphosphines to afford the monodentate, chelate, and bridge diiron complexes: selective substitution, structures, protonation, and electrocatalytic proton reduction. Appl Organomet Chem. 2019;33:e4949. doi: 10.1002/aoc.4949
  • Song LC, Ge JH, Liu XF, et al. Synthesis, structure and electrochemical properties of N-substituted diiron azadithiolates as active site models of Fe-only hydrogenases. J Organomet Chem. 2006;691:5701–5709. doi: 10.1016/j.jorganchem.2006.06.044
  • Lü S, Zhang RF, Li QL, et al. Synthesis, characterization and electrochemical properties of two isomers of diiron diselenolato complexes and a new pathway to the μ4-Se twin cluster. J Organomet Chem. 2018;873:66–72. doi: 10.1016/j.jorganchem.2018.08.003
  • Gloaguen F, Lawrence JD, Rauchfuss TB. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate. J Am Chem Soc. 2001;123:9476–9477. doi: 10.1021/ja016516f
  • Zaffaroni R, Rauchfuss TB, Gray DL, et al. Terminal vs bridging hydrides of diiron dithiolates: protonation of Fe2(dithiolate)(CO)2(PMe3)4. J Am Chem Soc. 2012;134:19260–19269. doi: 10.1021/ja3094394
  • Li QL, Zhang RF, Ma CL, et al. Synthesis, characterization, and some electrocatalytic properties of heteromultinuclear FeI/RuII clusters. Appl Organomet Chem. 2020;34:e5461.
  • Zhao PH, Hu MY, Li JR, et al. Influence of dithiolate bridges on the structures and electrocatalytic performance of small bite-angle PNP-chelated diiron complexes Fe2(μ-xdt)(CO)4{κ2–(Ph2P)2NR} related to [FeFe]-hydrogenases. Organometallics. 2019;38:385–394. doi: 10.1021/acs.organomet.8b00759
  • Felton GAN, Mebi CA, Petro BJ, et al. Review of electrochemical studies of complexes containing the Fe2S2 core characteristic of [FeFe]-hydrogenases including catalysis by these complexes of the reduction of ccids to form dihydrogen. J Organomet Chem. 2009;694:2681–2699. doi: 10.1016/j.jorganchem.2009.03.017
  • Song LC, Wang YX, Xing XK, et al. Hydrophilic quaternary ammonium-group-containing [FeFe]-hydrogenase models: synthesis, structures, and electrocatalytic hydrogen production. Chem Eur J. 2016;22:16304–16315. doi: 10.1002/chem.201603040
  • APEX2 version 2009. 7-0. Madison (WI): Bruker AXS, Inc; 2007.
  • Sheldrick GM. SADABS: program for absorption correction of Area Detector Frames. Madison (WI): Bruker AXS Inc.; 2001.
  • Dolomanov OV, Bourhis LJ, Gildea RJ, et al. OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst. 2009;42:339–341. doi: 10.1107/S0021889808042726
  • Sheldrick GM. A short history of SHELX. Acta Cryst. 2008;A64:112–122. doi: 10.1107/S0108767307043930

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.