251
Views
17
CrossRef citations to date
0
Altmetric
Articles

A DFT study on the sulfanilamide interaction with graphyne-like boron nitride nanosheet

, , , &
Pages 483-497 | Received 17 Jan 2020, Accepted 06 Apr 2020, Published online: 24 Apr 2020

References

  • Marshall Jr E. Determination of sulfanilamide in blood and urine. Proc Soc Exp Biol Med. 1937;36:422–424. doi: 10.3181/00379727-36-9255P
  • Rehman K, Kamran SH, Akash MSH. Toxicity of antibiotics. In: Hashmi M, editor. Antibiotics and antimicrobial resistance genes in the environment. COMSATS: Elsevier; 2020. p. 234–252.
  • Jiang X, Li M. Ecological safety hazards of wastewater. In: Ren H, editor. High-risk pollutants in wastewater. Nanjing: Elsevier; 2020. p. 101–123.
  • Li H, Kuang X, Shen X, et al. Improvement of voltammetric detection of sulfanilamide with a nanodiamond− modified glassy carbon electrode. Int J Electrochem Sci. 2019;14:7858–7870. doi: 10.20964/2019.08.47
  • Ning Z. Determination of sulfanilamide residues in sports nutrition by UPLC-MS/MS. Ligong: The Food Industry; 2018. p. 81.
  • Ferraz BR, Guimarães T, Profeti D, et al. Electrooxidation of sulfanilamide and its voltammetric determination in pharmaceutical formulation, human urine and serum on glassy carbon electrode. J Pharm Anal. 2018;8:55–59. doi: 10.1016/j.jpha.2017.10.004
  • El Idrissi M, Meyer CE, Zartner L, et al. Nanosensors based on polymer vesicles and planar membranes: a short review. J Nanobiotechnol. 2018;16:63. doi: 10.1186/s12951-018-0393-7
  • Liu X, Ma T, Pinna N, et al. Two-dimensional nanostructured materials for gas sensing. Adv Funct Mater. 2017;27:1702168. doi: 10.1002/adfm.201702168
  • Moladoust R. Sensing performance of boron nitride nanosheets to a toxic gas cyanogen chloride: computational exploring. Chem Rev Lett. 2019;2:151–156.
  • Li D, Kaner RB. Graphene-based materials. Science. 2008;320:1170–1171. doi: 10.1126/science.1158180
  • Siadati SA, Rezazadeh S. Switching behavior of an actuator containing germanium, silicon-decorated and normal C20 fullerene. Chem Rev Lett. 2018;1:77–81.
  • Zou Y, Li F, Zhu Z, et al. An ab initio study on gas sensing properties of graphene and Si-doped graphene. European Phys J B. 2011;81:475–479. doi: 10.1140/epjb/e2011-20225-8
  • Majedi S, Rauf HG, Boustanbakhsh M. DFT study on sensing possibility of the pristine and Al- and Ga-embeded B12N12 nanostructures toward hydrazine and hydrogen peroxide and their analogues. Chem Rev Lett. 2019;2:176–186.
  • Gharakhani F, Vessally E, Esrafili MD, et al. The interaction energies between glycoluril clip and thiophenol derivatives using density functional theory calculations. J Sulfur Chem. 2015;36:351–357. doi: 10.1080/17415993.2015.1028941
  • Jabarullah NH, Jermsittiparsert K, Melnikov PA, et al. Methods for the direct synthesis of thioesters from aldehydes: a focus review. J Sulfur Chem. 2020;41:96–115. doi: 10.1080/17415993.2019.1658764
  • Khaleghi Abbasabadi M, Rashidi A, Safaei-Ghomi J, et al. A new strategy for hydrogen sulfide removal by amido-functionalized reduced graphene oxide as a novel metal-free and highly efficient nanoadsorbent. J Sulfur Chem. 2015;36:660–671. doi: 10.1080/17415993.2015.1079711
  • Shokuhi Rad A, Esfahanian M, Maleki S, et al. Application of carbon nanostructures toward SO2 and SO3 adsorption: a comparison between pristine graphene and N-doped graphene by DFT calculations. J Sulfur Chem. 2016;37:176–188. doi: 10.1080/17415993.2015.1116536
  • Krishnaveni K, Subadevi R, Sivakumar M, et al. Synthesis and characterization of graphene oxide capped sulfur/polyacrylonitrile composite cathode by simple heat treatment. J Sulfur Chem. 2019;40:377–388. doi: 10.1080/17415993.2019.1582655
  • Heidari Nezhad Janjanpour M, Vakili M, Daneshmehr S, et al. Study of the ionization potential, electron affinity and HOMO-LUMO gaps in the smal fullerene nanostructures. Chem Rev Lett. 2018;1:45–48.
  • Cranford SW, Buehler MJ. Mechanical properties of graphyne. Carbon NY. 2011;49:4111–4121. doi: 10.1016/j.carbon.2011.05.024
  • Narita N, Nagai S, Suzuki S, et al. Electronic structure of three-dimensional graphyne. Phys Rev B. 2000;62:11146. doi: 10.1103/PhysRevB.62.11146
  • Kou J, Zhou X, Lu H, et al. Graphyne as the membrane for water desalination. Nanoscale. 2014;6:1865–1870. doi: 10.1039/C3NR04984A
  • Srinivasu K, Ghosh SK. Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J Phys Chem C. 2012;116:5951–5956. doi: 10.1021/jp212181h
  • Xu Z, Lv X, Li J, et al. A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. RSC Adv. 2016;6:25594–25600. doi: 10.1039/C6RA01870J
  • Majidi R, Karami AR. Adsorption of formaldehyde on graphene and graphyne. Physica E. 2014;59:169–173. doi: 10.1016/j.physe.2014.01.019
  • Liang B, Bai H, Huang Y. Theoretical investigation on electronic properties and carrier mobilities of BN-substituted graphyne nanoribbons. Comput Theor Chem. 2017;1115:261–269. doi: 10.1016/j.comptc.2017.06.017
  • Yang Z, Zhang Y, Guo M, et al. Adsorption of hydrogen and oxygen on graphdiyne and its BN analog sheets: a density functional theory study. Comput Mater Sci. 2019;160:197–206. doi: 10.1016/j.commatsci.2018.12.033
  • Bhattacharya B, Singh NB, Sarkar U. Pristine and BN doped graphyne derivatives for UV light protection. Int J Quantum Chem. 2015;115:820–829. doi: 10.1002/qua.24910
  • Chen X, Qiao Q, An L, et al. Why do boron and nitrogen doped α-and γ-graphyne exhibit different oxygen reduction mechanism? A first-principles study. J Phys Chem C. 2015;119:11493–11498. doi: 10.1021/acs.jpcc.5b02505
  • Omidvar A, Mohajeri A. Decorated graphyne and its boron nitride analogue as versatile nanomaterials for CO detection. Mol Phys. 2015;113:3900–3908. doi: 10.1080/00268976.2015.1080388
  • Schmidt MW, Baldridge KK, Boatz JA, et al. General atomic and molecular electronic structure system. J Comp Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112
  • Becke A. Density-functional exchange-energy approximation with correct exchange. J Chem Phys. 1993;98:5648–5652. doi: 10.1063/1.464913
  • Lee C, Yang W, Parr R. Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785
  • Civalleri B, Zicovich-Wilson CM, Valenzano L, et al. B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. Cryst Eng Comm. 2008;10:405–410. doi: 10.1039/B715018K
  • Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem. 2004;25:1463–1473. doi: 10.1002/jcc.20078
  • Mohammadi S, Musavi M, Abdollahzadeh F, et al. Application of nanocatalysts in C-Te cross-coupling reactions: an overview. Chem Rev Lett. 2018;1:49–55.
  • Beheshtian J, Peyghan AA, Bagheri Z. Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens Actuators B: Chem. 2012;171:846–852. doi: 10.1016/j.snb.2012.05.082
  • Samadizadeh M, Rastegar SF, Peyghan AA. F−, Cl−, Li+ and Na+ adsorption on AlN nanotube surface: a DFT study. Physica E. 2015;69:75–80. doi: 10.1016/j.physe.2015.01.021
  • Behmagham F, Asadi Z, Jamal Sadeghi Y. Synthesis, spectroscopic and computational investigation of bis (3-methoxyphenylthio) ethyl) naphthalene. Chem Rev Lett. 2018;1:68–76.
  • Babanezhad E, Beheshti A. The possibility of selective sensing of the straight-chain alcohols (including methanol to n-pentanol) by using the C20 fullerene and C18NB nano cage. Chem Rev Lett. 2018;1:82–88.
  • Boys SF, Bernardi F. Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors. Mol Phys. 1970;19:553–561. doi: 10.1080/00268977000101561
  • O’Boyle N, Tenderholt A, Langner K. Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem. 2008;29:839–845. doi: 10.1002/jcc.20823
  • Ahmadi Peyghan A, Hadipour N, Bagheri Z. Effects of Al-doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: DFT studies. J Phys Chem C. 2013;117:2427–2432. doi: 10.1021/jp312503h
  • Eslami M, Vahabi V, Peyghan AA. Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: a computational study. Physica E. 2016;76:6–11. doi: 10.1016/j.physe.2015.09.043
  • Samadizadeh M, Peyghan AA, Rastegar SF. Sensing behavior of BN nanosheet toward nitrous oxide: a DFT study. Chin Chem Lett. 2015;26:1042–1045. doi: 10.1016/j.cclet.2015.05.048
  • Baikie I, Mackenzie S, Estrup P, et al. Noise and the Kelvin method. Rev Sci Instrum. 1991;62:1326–1332. doi: 10.1063/1.1142494
  • Korotcenkov G. Sensing layers in work-function-type gas sensors. In: Korotcenkov G, editor. Handbook of gas sensor materials. New York: Springer; 2013. p. 377–388.
  • Richardson O. Electron emission from metals as a function of temperature. Phys Rev. 1924;23:153–157. doi: 10.1103/PhysRev.23.153
  • Redondo A, Zeiri Y, Low JJ, et al. Application of transition state theory to desorption from solid surfaces: ammonia on Ni(111). J Chem Phys. 1983;79:6410–6415. doi: 10.1063/1.445748
  • Kumar R, Goel N, Kumar M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sensors. 2017;2:1744–1752. doi: 10.1021/acssensors.7b00731
  • Bano A, Krishna J, Pandey DK, et al. An ab initio study of sensing applications of MoB2 monolayer: a potential gas sensor. Phys Chem Chem Phys. 2019;21:4633–4640. doi: 10.1039/C8CP07038E
  • Behmagham F, Vessally E, Massoumi B, et al. A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlattices Microstruct. 2016;100:350–357. doi: 10.1016/j.spmi.2016.09.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.