162
Views
9
CrossRef citations to date
0
Altmetric
Articles

Efficient, selective and mild oxidation of sulfides and oxidative coupling of thiols catalyzed by Pd(II)-isatin Schiff base complex immobilized into three-dimensional mesoporous silica KIT-6

, ORCID Icon, &
Pages 561-580 | Received 19 Jan 2020, Accepted 08 May 2020, Published online: 27 May 2020

References

  • Nazarzadeh S, Ghorbani-Choghamarani A, Tahanpesar E. Synthesis and characterization of MCM-41@XA@Ni(II) as versatile and heterogeneous catalyst for efficient oxidation of sulfides and acetylation of alcohols under solvent-free conditions. J Iran Chem Soc. 2018;15:649–659. doi: 10.1007/s13738-017-1265-z
  • Rostamnia S, Mohsenzad F. Nanoarchitecturing of open metal site Cr-MOFs for oxodiperoxo molybdenum complexes [MoO(O2)2@En/MIL-100(Cr)] as promising and bifunctional catalyst for selective thioether oxidation. Mol Catal. 2018;445:12–20. doi: 10.1016/j.mcat.2017.11.003
  • Rostamnia S, Gholipour B, Liu X, et al. NH2-coordinately immobilized tris(8-quinolinolato)iron onto the silica coated magnetite nanoparticle: Fe3O4@SiO2-FeQ3 as a selective Fenton-like catalyst for clean oxidation of sulfides. J Colloid Interface Sci. 2018;511:447–455. doi: 10.1016/j.jcis.2017.10.028
  • Rostamnia S, Hosseini HG. Post-synthetically modified SBA-15 with NH2-coordinately immobilized iron-oxine: SBA-15/NH2-FeQ3 as a Fenton-like hybrid catalyst for the selective oxidation of organic sulfides. New J Chem. 2018;42:619–627. doi: 10.1039/C7NJ02742G
  • Chorbani-Choghamarani A, Shiri L, Azadi G. Preparation and characterization of oxovanadium(IV)-glycine imine immobilized on magnetic nanoparticles and its catalytic application for selective oxidation of sulfides to sulfoxides. Res Chem Intermed. 2016;42:6049–6060. doi: 10.1007/s11164-016-2444-8
  • Doustkhah S, Mohtasham H, Hasani M, et al. Merging periodic mesoporous organosilica (PMO) with mesoporous aluminosilica (Al/Si-PMO): A catalyst for green oxidation. Mol Catal. 2020;482:110676), . 110676. doi: 10.1016/j.mcat.2019.110676
  • Nikoorazm M, Ghorbani-Choghamarani A, Noori N. Preparation and characterization of functionalized Cu(II) Schiff base complex on mesoporous MCM-41 and its application as effective catalyst for the oxidation of sulfides and oxidative coupling of thiols. J Porous Mater. 2015;22:877–885. doi: 10.1007/s10934-015-9961-5
  • Sabet A, Kolvari E, Koukabi N, et al. Oxidative coupling of aromatic thiols to corresponding disulfides using magnetic particle-supported sulfonic acid catalyst and hydrogen peroxide under mild conditions. J Sulfur Chem. 2015;36:300–307. doi: 10.1080/17415993.2015.1024120
  • Alvez D, Lara RG, Contreira ME, et al. Copper-catalyzed sulfenylation of pyrroles with disulfides or thiols: directly synthesis of sulfenyl pyrroles. Tetrahedron Lett. 2012;53:3364–3368. doi: 10.1016/j.tetlet.2012.04.094
  • Liu Y, Wang H, Wang C, et al. Bio-based green solvent mediated disulfide synthesis via thiol couplings free of catalyst and additive. RSC Adv. 2013;3:21369–21372. doi: 10.1039/c3ra42915f
  • Thurow S, Pereira VA, Martinez DM, et al. Base-free oxidation of thiols to disulfides using selenium ionic liquid. Tetrahedron Lett. 2011;52:640–643. doi: 10.1016/j.tetlet.2010.11.158
  • Guan J, Liu J. A copper(II) Schiff base complex immobilized onto SBA-15 silica for selective oxidation of benzyl alcohol. Transit Met Chem. 2014;39:233–238. doi: 10.1007/s11243-013-9795-4
  • Islam SM, Roy AS, Mondal P, et al. A recyclable polymer anchored copper(II) catalyst for oxidation reaction of olefins and alcohols with tert-butylhydroperoxide in aqueous medium. Inorg Chem Commun. 2012;24:170–176. doi: 10.1016/j.inoche.2012.07.002
  • Bahramian B, Mirkhani V, Moghadam M, et al. Selective alkene epoxidation and alkane hydroxylation with sodium periodate catalyzed by cationic Mn(III)-salen supported on Dowex MSC1. Appl Catal A: Gen. 2006;301:169–175. doi: 10.1016/j.apcata.2005.11.031
  • Nikoorazm M, Ghorbani-Choghamarani A, Khanmoradi M. Immobilization of a vanadium complex onto functionalized nanoporous MCM-41 and its application as a catalyst for the solvent-free chemoselective oxidation of sulfide to sulfoxide. Appl Organometal Chem. 2016;30:236–241. doi: 10.1002/aoc.3422
  • Fardjahromi M A, Moghadam M, Tangestaninejad S, et al. Manganese(III)salophen supported on a silica containing triazine dendrimer: an efficient catalyst for epoxidation of alkenes with sodium periodate. RSC Adv. 2016;6:20128–20134. doi: 10.1039/C5RA18931D
  • Kleitz F, Choi SH, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun. 2003;17:2136–2137. doi: 10.1039/b306504a
  • Zhang F, Zheng Y, Cao Y, et al. J Mater Chem. 2009;19:2771–2777. doi: 10.1039/b818495j
  • Kalbasi RJ, Mosadegh N. Palladium nanoparticles supported on poly(2-hydroxyethyl methacrylate)/KIT-6 composite as an efficient and reusable catalyst for Suzuki–Miyaura reaction in water. J Inorg Organomet Polym. 2012;22:404–414. doi: 10.1007/s10904-011-9569-4
  • Mahdavi H, Nikoorazm M, Ghorbani-Choghamarani A, et al. Synthesis and characterization of copper (II) Schiff base complex containing MCM-41 as robust and clean nano reactor catalyst for the selective oxidation of sulfides to sulfoxides using H2O2. J Porous Mater. 2016;23:75–82. doi: 10.1007/s10934-015-0057-z
  • Ghorbani-Choghamarani A, Tahmasbi B, Arghand F, et al. Nickel Schiff-base complexes immobilized on boehmite nanoparticles and their application in the oxidation of sulfides and oxidative coupling of thiols as novel and reusable nano organometal catalysts. RSC Adv. 2015;5:92174–92183. doi: 10.1039/C5RA14974F
  • Thamilarasan V, Revathi P, Praveena A, et al. Synthesis and characterization of dimeric Schiff base CoII, NiII, CuII complexes for their catalytic application of aerobic oxidation of alcohols and interaction with biomolecules. Inorg Chim Acta. 2020;508, 119626. doi: 10.1016/j.ica.2020.119626
  • Rambabu A, Ganji N, Daravath S, et al. Mononuclear Co(II), Ni(II) and Cu(II) complexes of the Schiff base, 2-(((4-trifluoromethoxy)phenylimino)methyl)-6-tert-butylphenol: synthesis, spectroscopic characterization. X-ray study and biological evaluation. J Mol Struct. 2020;1199, 127006. doi: 10.1016/j.molstruc.2019.127006
  • Ahmad MN, Iman K, Raza MK, et al. Anticancer properties, apoptosis and catecholase mimic activities of dinuclear cobalt(II) and copper(II) Schiff base complexes. Bioorg Chem. 2020;95, 103561.
  • Malekshah RE, Shakeri F, Khaleghian A, et al. Developing a biopolymeric chitosan supported Schiff-base and Cu(II), Ni(II) and Zn(II) complexes and biological evaluation as pro-drug. Int J Biol Macromol. 2020;152:846–861. doi: 10.1016/j.ijbiomac.2020.02.245
  • Sumrra SH, Atif AH, Zafar MN, et al. Synthesis, crystal structure, spectral and DFT studies of potent isatin derived metal complexes. J Mol Struct. 2018;1166:110–120. doi: 10.1016/j.molstruc.2018.03.132
  • Tehrani KHME, Hashemi M, Hassan M, et al. Synthesis and antibacterial activity of Schiff bases of 5-substituted isatins. Chin Chem Lett. 2016;27:221–225. doi: 10.1016/j.cclet.2015.10.027
  • Sobhani S, Zarifi F. Pd-isatin Schiff base complex immobilized on γ-Fe2O3 as a magnetically recyclable catalyst for the Heck and Suzuki cross-coupling reactions. Chin J Catal. 2015;36:555–563. doi: 10.1016/S1872-2067(14)60291-6
  • Layek S A, Agrahari B, Pathak DD. Synthesis and characterization of a new Pd(II)-Schiff base complex [Pd(APD)2]: An efficient and recyclable catalyst for Heck-Mizoroki and Suzuki-Miyaura reactions. J Organomet Chem. 2017;846:105–112. doi: 10.1016/j.jorganchem.2017.05.049
  • Esmaeilpour M, Javadi J, Nowroozi Dodeji F, et al. Fe3O4@SiO2-polymer-imid-Pd magnetic porous nanosphere as magnetically separable catalyst for Mizoroki–Heck and Suzuki–Miyaura coupling reactions. J Iran Chem Soc. 2014;11:1703–1715. doi: 10.1007/s13738-014-0443-5
  • Veisi H, Azadbakht R, Saeidifar F, et al. Schiff base-functionalized multi walled carbon nano tubes to immobilization of palladium nanoparticles as heterogeneous and recyclable nanocatalyst for Suzuki reaction in aqueous media under mild conditions. Catal Lett. 2017;147:976–986. doi: 10.1007/s10562-016-1963-7
  • Rezaie G, Naghipour A, Fakhri A. Anchored complexes of Ni, Pt, and Pd on Fe3O4 nanoparticles as new and eco-friendly nanocatalysts in Suzuki and Heck coupling reactions. J Coord Chem. 2018;71:2924–2940. doi: 10.1080/00958972.2018.1502424
  • Nikoorazm M, Ghorbani-Choghamarani A, Panahi A, et al. Pd(0)-Schiff-base@MCM-41 as high-efficient and reusable catalyst for C–C coupling reactions. J Iran Chem Soc. 2018;15:181–189. doi: 10.1007/s13738-017-1222-x
  • De Castro K, Rhee H. Resin-immobilized palladium nanoparticle catalysts for Suzuki–Miyaura cross-coupling reaction in aqueous media. J Incl Phenom Macrocycl Chem. 2015;82:13–24. doi: 10.1007/s10847-014-0428-0
  • Bhuyan D, Selvaraj K, Saikia L. Pd@SBA-15 nanocomposite catalyst: synthesis and efficient solvent-free semihydrogenation of phenylacetylene under mild conditions. Micropor Mesopor Mater. 2017;241:266–273. doi: 10.1016/j.micromeso.2016.12.025
  • Doustkhah E, Mohtasham H, Farajzadeh M, et al. Organosiloxane tunability in mesoporous organosilica and punctuated Pd nanoparticles growth; theory and experiment. Micropor Mesopor Mater. 2020;293, 109832. doi: 10.1016/j.micromeso.2019.109832
  • Doustkhah E, Rostamnia S, Imura M, et al. Thiourea bridged periodic mesoporous organosilica with ultra-small Pd nanoparticles for coupling reactions. RSC Adv. 2017;7:56306–56310. doi: 10.1039/C7RA11711F
  • Rostamnia S, Alamgholiloo H, Liu X. Pd-grafted open metal site copper-benzene-1,4-dicarboxylate metal organic frameworks (Cu-BDC MOF's) as promising interfacial catalysts for sustainable Suzuki coupling. J Colloid Interface Sci. 2016;469:310–317. doi: 10.1016/j.jcis.2016.02.021
  • Alamgholiloo H, Rostamnia S, Hassankhani A, et al. Stepwise post-modification immobilization of palladium Schiff-base complex on to the OMS-Cu (BDC) metal-organic framework for Mizoroki-Heck cross-coupling reaction. Appl. Organometal. Chem. 2018. doi: 10.1002/aoc.4539
  • Alamgholiloo H, Rostamnia S, Hassankhani A, et al. Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: Synergic boost to hydrogen production from formic acid. J Colloid Interface Sci. 2020;567:126–135. doi: 10.1016/j.jcis.2020.01.087
  • Doustkhah E, Rostamnia S, Zeynizadeh B, et al. Efficient H2 generation using thiourea-based periodic mesoporous organosilica with Pd nanoparticles. Chem Lett. 2018;47:1243–1245. doi: 10.1246/cl.180537
  • Kleitz F, Kim TW, Ryoo R. Design of mesoporous silica at low acid concentrations in triblock copolymer-butanol-water systems. Bull Korean Chem Soc. 2005;26:1653–1668. doi: 10.5012/bkcs.2005.26.11.1653
  • Daniel NT, Kenneth JBJ. Perspective of recent progress in immobilization of enzymes. ACS Catal. 2011;1:956–968. doi: 10.1021/cs200124a
  • Sun J, Kan Q, Li Z, et al. Different transition metal (Fe2+, Co2+, Ni2+, Cu2+ or VO2+) Schiff complexes immobilized onto three-dimensional mesoporous silica KIT-6 for the epoxidation of styrene. RSC Adv. 2014;4:2310–2317. doi: 10.1039/C3RA45599H
  • Najafi Chermahini A, Andisheh N, Teimouri A. KIT-6-anchored sulfonic acid groups as a heterogeneous solid acid catalyst for the synthesis of aryl tetrazoles. J Iran Chem Soc. 2018;15:831–838. doi: 10.1007/s13738-017-1282-y
  • Visuvamithiran P, Palanichamy M, Shanthi K, et al. Selective epoxidation of olefins over Co(II)-Schiff base immobilised on KIT-6. Appl Catal A: Gen. 2013;462-463:31–38. doi: 10.1016/j.apcata.2013.05.007
  • Yuan C, Huang Z, Chen J. Basic ionic liquid supported on mesoporous SBA-15: An efficient heterogeneous catalyst for epoxidation of olefins with H2O2 as oxidant. Catal Commun. 2012;24:56–60. doi: 10.1016/j.catcom.2012.03.003
  • Yang Y, Zhang Y, Hao S, et al. Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity. Appl Catal A: Gen. 2010;381:274–281. doi: 10.1016/j.apcata.2010.04.018
  • Xian-Ying S, Jun-Fa W. Selective oxidation of sulfide catalyzed by peroxotungstate immobilized on ionic liquid-modified silica with aqueous hydrogen peroxide. J Mol Catal A: Chem. 2008;280:142–147. doi: 10.1016/j.molcata.2007.11.002
  • Bagherzadeh M, Haghdoost MM, Shahbazirad A. Nanoparticle supported, magnetically separable vanadium complex as catalyst for selective oxidation of sulfides. J Coord Chem. 2012;65:591–601. doi: 10.1080/00958972.2012.657188
  • Bayat A, Shakourian-Fard M, Ehyaei N, et al. A magnetic supported iron complex for selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide at room temperature. RSC Adv. 2014;4:44274–44281. doi: 10.1039/C4RA07356H
  • Chorbani-Choghamarani A, Ghasemi B, Safari Z, et al. Schiff base complex coated Fe3O4 nanoparticle: A highly reusable nanocatalyst for selective oxidation of sulfides and oxidative coupling of thiols. Catal Commun. 2015;60:70–75. doi: 10.1016/j.catcom.2014.11.007
  • Sedrpoushan A, Hosseini-Eshbala F, Mohanazadeh F, et al. Tungstate supported mesoporous silica SBA-15 with imidazolium framework as a hybrid nanocatalyst for selective oxidation of sulfides in the presence of hydrogen peroxide. Appl. Organometal. Chem. 2017. doi: 10.1002/aoc.4004
  • Ghorbani-Choghamarani A, Nikoorazm M, Goudarziafshar H, et al. An efficient and new method on the oxidative coupling of thiols under mild and heterogeneous conditions. Bull Korean Chem Soc. 2009;30:1388–1390. doi: 10.5012/bkcs.2009.30.6.1388
  • Ghammamy S, Mohammadi MK, Joshaghani AH. Triethylammonium halochromates/silica gel: an efficient reagent for oxidative coupling of thiols to disulfides. Maced J Chem Chem Eng. 2008;27:117–122. doi: 10.20450/mjcce.2008.231
  • Bagherzadeh M, Haghdoost MM, Matloubi-Moghaddam F, et al. Mn(III) complex supported on Fe3O4 nanoparticles: magnetically separable nanocatalyst for selective oxidation of thiols to disulfides. J Coord Chem. 2013;66:3025–3036. doi: 10.1080/00958972.2013.821699
  • Ghorbani-Choghamarani A, Moradi P, Tahmasebi B. Ni-SMTU@boehmite: as an efficient and recyclable nanocatalyst for oxidation reactions. RSC Adv. 2016;6:56458–56466. doi: 10.1039/C6RA09950E

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.