154
Views
9
CrossRef citations to date
0
Altmetric
Articles

An expedient carbon–sulfur bond formation explored through the cellulose sulfonic acid (CSA) catalyzed dithioacetal protection of carbonyl compounds

Pages 530-541 | Received 18 Apr 2020, Accepted 21 May 2020, Published online: 10 Jun 2020

References

  • Giovanni S, Roberto B, Franca B, et al. Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chem Rev. 2004;104(1):199–250. doi: 10.1021/cr0200769
  • Wuts PG. Greene’s protective groups in organic synthesis. New York: Wiley; 2014.
  • Corey EJ, Seebach D. Synthesis of 1,n-dicarbonyl derivatives using carbanions from 1,3-dithianes. Angew Chem Int Ed Engl. 1965;4:1075–1077. doi: 10.1002/anie.196510752
  • Chiba K, Uchiyama R, Kim S, et al. Benzylic intermolecular carbon-carbon bond formation by selective anodic oxidation of dithioacetals. Org Lett. 2001;3:1245–1248. doi: 10.1021/ol015734a
  • Wong KT, Luh TY. A chelation approach toward activation of Csp3-S bonds. Nickel-catalyzed selective cross coupling of bisdithioacetals with grignard reagents. J Am Chem Soc. 1992;114:7308–7310. doi: 10.1021/ja00044a060
  • Sasson R, Hagooly A, Rozen S. Novel method for incorporating the CHf2 group into organic molecules using Brf3. Org Lett. 2003;5:769–771. doi: 10.1021/ol034051n
  • Mozingo R, Wolf DE, Harris SA, et al. Hydrogenolysis of sulfur compounds by raney nickel catalyst. J Am Chem Soc. 1943;65:1013–1016. doi: 10.1021/ja01246a005
  • Vale JR, Rimpilainen T, Sievanen E, et al. Poteconomy autooxidative condensation of 2-Aryl-2-lithio-1,3-dithianes. J Org Chem. 2018;83:1948–1958. doi: 10.1021/acs.joc.7b02896
  • Saito K, Kondo K, Akiyama T. Direct dehydroxylative coupling reaction of alcohols with organosilanes through Si–X bond activation by halogen bonding. Org Lett. 2015;17:3366–3369. doi: 10.1021/acs.orglett.5b01651
  • Liu L, Wang G, Jiao J, et al. Sulfur-directed ligand-free C-H borylation by Iridium catalysis. Org Lett. 2017;19:6132–6135. doi: 10.1021/acs.orglett.7b03008
  • Chang J, Liu B, Yang Y, et al. Pd-catalyzed C-S activation/isocyanide insertion/hydrogenation enables a selective aerobic oxidation/cyclization. Org Lett. 2016;18:3984–3987. doi: 10.1021/acs.orglett.6b01780
  • Smith AB, Adams CM. Evolution of dithiane-based strategies for the construction of architecturally complex natural products. Acc Chem Res. 2004;37:365–377. doi: 10.1021/ar030245r
  • Liu XL, Yang KW, Zhang YJ, et al. Amino acid thioesters exhibit inhibitory activity against B1-B3 subclasses of metallo-β-lactamases. Bioorg Med Chem Lett. 2016;26:4698–4701. doi: 10.1016/j.bmcl.2016.08.048
  • Althoff F, Benzing K, Comba P, et al. Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nat Commun. 2014;5:4205–4209. doi: 10.1038/ncomms5205
  • Scott KA, Njardarson JT. Analysis of US FDA-approved drugs containing sulfur atoms. Top Curr Chem. 2018;376(5):1–34.
  • Djerassi C, Gorman M. Studies in organic sulfur compounds. VI.1 cyclic ethylene and trimethylene hemithioketals. J Am Chem Soc. 1953;75:3704–3708. doi: 10.1021/ja01111a029
  • Ralls JW, Dobson RM, Reigel B. Addition of mercaptans to unsaturated steroid ketones. J Am Chem Soc. 1949;71:3320–3325. doi: 10.1021/ja01178a014
  • Nakata T, Nagao S, Mori S, et al. Total synthesis of (+)-pederin.1. Stereocontrolled synthesis of (+)-benzoylpedamide. Tetrahedron Lett. 1985;26:6461–6464. doi: 10.1016/S0040-4039(00)99027-0
  • Ong BSA. Simple and efficient method of thioacetal and ketalization. Tetrahedron Lett. 1980;21:4225–4428. doi: 10.1016/S0040-4039(00)92868-5
  • Garlaschelli L, Vidari G. Anhydrous Lanthanum trichloride, a mild and convenient reagent for thiocetalization. Tetrahedron Lett. 1990;31:5815–5816. doi: 10.1016/S0040-4039(00)97967-X
  • Muthusamy S, Babu SA, Gunanathan C. Indium(III) chloride as an efficient, convenient catalyst for thioacetalization and its chemoselectivity. Tetrahedron Lett. 2001;42:359–362. doi: 10.1016/S0040-4039(00)01966-3
  • Samajdar S, Basu MK, Becker FF, et al. A new molecular Iodine-catalyzed thioketalization of carbonyl compounds: selectivity and scope. Tetrahedron Lett. 2001;42:4425–4427. doi: 10.1016/S0040-4039(01)00752-3
  • Kamal A, Chouhan G. Mild and efficient chemoselective protection of aldehydes as dithioacetals employing n-bromosuccinimide. Synlett. 2002;3:474–476. doi: 10.1055/s-2002-20469
  • De SK. Cobalt(II)chloride catalyzed chemoselective thioacetalization of aldehydes. Tetrahedron Lett. 2004;45:1035–1036. doi: 10.1016/j.tetlet.2003.11.082
  • Ong BS, Chan TH. A simple method of dithioacetal and ketalization. Synth Commun. 1977;7:283–286. doi: 10.1080/00397917708050748
  • Kumar V, Dev S. Titanium tetrachloride, an efficient and convenient reagent for thioacetalization. Tetrahedron Lett. 1983;24:1289–1292. doi: 10.1016/S0040-4039(00)81637-8
  • Tani H, Masumoto K, Inamasu T. Tellurium tetrachloride as a mild and efficient catalyst for dithioacetalization. Tetrahedron Lett. 1991;32:2039–2042. doi: 10.1016/S0040-4039(00)78902-7
  • Firouzabadi H, Iranpoor N, Karimi B. Lithium bromide-catalyzed highly chemoselective and efficient dithioacetalization of α, β-unsaturated and aromatic aldehydes under solvent-free conditions. Synthesis. 1999;1:58–60. doi: 10.1055/s-1999-3679
  • Firouzabadi H, Iranpoor N, Amani K. Heteropoly acids as heterogeneous catalysts for thioacetalization and transthioacetalization reactions. Synthesis. 2002;1:59–62.
  • Firouzabadi H, Iranpoor N, Karimi B. Tungsten hexachloride (WCl6) as an efficient catalyst for chemoselective dithioacetalization of carbonyl compounds and transthioacetalization of acetals. Synlett. 1998;7:739–740. doi: 10.1055/s-1998-1756
  • Saraswathy VG, Geetha V, Sankararaman S. Chemoselective protection of aldehydes as dithioacetals in lithium perchlorate-diethyl ether medium. Evidence for the formation of oxocarbenium ion intermediate from acetals. J Org Chem. 1994;59:4665–4670. doi: 10.1021/jo00095a049
  • Besra RC, Rudrawar S, Chakraborti AK. Copper(ii) tetrafluoroborate as an extremely efficient catalyst for 1,3-dithiolane/dithiane formation from carbonyl compounds under solvent-free conditions at room temperature. Tetrahedron Lett. 2005;46:6213–6217. doi: 10.1016/j.tetlet.2005.07.059
  • Kamal A, Chouha GN. Scandium triflate as a recyclable catalyst for chemoselective thioacetalization. Tetrahedron Lett. 2002;43:1347–1350. doi: 10.1016/S0040-4039(01)02378-4
  • Muthusamy S, Babu SA, Gunanathan C. Indium triflate: a mild Lewis acid catalyst for thioacetalization and transthioacetalization. Tetrahedron. 2002;58:7897–7901. doi: 10.1016/S0040-4020(02)00897-9
  • De SK. Yttrium triflate as an efficient and useful catalyst for chemoselective protection of carbonyl compounds. Tetrahedron Lett. 2004;45:2339–2341. doi: 10.1016/j.tetlet.2004.01.106
  • Lenardao EJ, Borges EL, Mendes SR, et al. Selenonium ionic liquid as an efficient catalyst for the synthesis of thioacetals under solvent-free conditions. Tetrahedron Lett. 2008;49:1919–1921. doi: 10.1016/j.tetlet.2008.01.096
  • Kamitori Y, Hojo M, Masuda R, et al. Selective protection of carbonyl compounds. Silica gel treated with thionyl chloride as an effective catalyst for thioacetalization. J Org Chem. 1986;51:1427–1431. doi: 10.1021/jo00359a009
  • Anand RV, Saravanan P, Singh VK. Solvent free thioacetalization of carbonyl compounds catalyzed by Cu(OTf)2-SiO2. Synlett. 1999;4:415–416. doi: 10.1055/s-1999-2635
  • Patney HK, Margan S. Zirconium(IV) chloride-silica catalysed thioacetalisation of carbonyl compounds. Tetrahedron Lett. 1996;37:4621–4622. doi: 10.1016/0040-4039(96)00892-1
  • Patney HK. A rapid mild and efficient method of thioacetalization usig anhydrous iron(III) chloride dispersed on silica gel. Tetrahedron Lett. 1991;32:2259–2260. doi: 10.1016/S0040-4039(00)79696-1
  • Rudrawar S, Besra RC, Chakraborti AK. Perchloric acid adsorbed on silica gel (HClO4-SiO2) as an extremely efficient and reusable catalyst for 1,3-dithiolane/dithiane formation. Synthesis. 2006;16:2767–2771.
  • Breslow R. Biomimetic control of chemical selectivity. Acc Chem Res. 1980;13:170–177. doi: 10.1021/ar50150a002
  • Klemm D, Heublein B, Fink HP, et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358–3393. doi: 10.1002/anie.200460587
  • Vekariya RH, Patel HD. Cellulose sulphuric acid (CSA) and starch sulphuric acid (SSA) as solid and heterogeneous catalysts in green organic synthesis: recent advances. Arkivoc. 2015;2015(i):136–159.
  • Kamble VT, Tayade RA, Davane BS, et al. A facile and efficient conversion of aldehydes into 1,1-diacetates (acylals) using iron(III) Fluoride as a novel catalyst. Aust J Chem. 2007;60:590–594. doi: 10.1071/CH06166
  • Kamble VT, Kadam KR, Joshi NS, et al. HClO4-SiO2 as a novel and recyclable catalyst for the synthesis of bis-indolylmethanes and bis-indolylglycoconjugates. Catal Commun. 2007;8:498–502. doi: 10.1016/j.catcom.2006.07.010
  • Waghmare AS, Patil TD, Kadam KR, et al. SFHS: Reusable catalyst for the synthesis of polyhydroquinoline derivatives and its molecular docking studies against tyrosine protein kinase. Iran J Catal. 2015;5:1–8.
  • Safari J, Banitaba SH, Khalili SD. Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction in aqueous media. J Mol Catal A: Chem. 2011;335:46–50. doi: 10.1016/j.molcata.2010.11.012
  • Daneshfar Z, Rostami A. Cellulose sulfonic acid as a green, efficient, and reusable catalyst for Nazarov cyclization of unactivated dienones and pyrazoline synthesis. RSC Adv. 2015;5:104695–104707. doi: 10.1039/C5RA19773B
  • Hu PF, Dong B, Zhou ZP, et al. Chemoselective thioacetalisation and transthioacetalisation of aldehydes catalyzed by PVP-I. Chem Select. 2019;4:10798–10804.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.