210
Views
12
CrossRef citations to date
0
Altmetric
Articles

Removal of methylmercaptan pollution using Ni and Pt-decorated graphene: an ab-initio DFT study

, , , , & ORCID Icon
Pages 593-604 | Received 15 Feb 2020, Accepted 02 Jun 2020, Published online: 20 Jun 2020

References

  • Shahmoradi A, Ghorbanzadeh Ahangari M, Jahanshahi M, et al. Adsorption of hazardous atoms on the surface of TON zeolite and bilayer silica: a DFT study. J Mol Model. 2020;26(6):119. doi: 10.1007/s00894-020-04381-w
  • Luttrell WE, Bobo ME. Methyl mercaptan. J Chem Health Saf. 2015;22(5):37–9. doi: 10.1016/j.jchas.2015.07.009
  • Cheremisinoff NP, Rosenfeld PE. Chapter 6 – sources of air emissions from pulp and paper mills. In: Cheremisinoff NP, Rosenfeld PE, editors. Handbook of pollution prevention and cleaner production. Oxford: William Andrew Publishing; 2010. p. 179–259.
  • Kim DJ, Yie JE. Role of copper chloride on the surface of activated carbon in adsorption of methyl mercaptan. J Colloid Interface Sci. 2005;283(2):311–5. doi: 10.1016/j.jcis.2004.09.035
  • Munday R. Mercaptans. In: Wexler P, editor. Encyclopedia of toxicology. 3rd ed. Oxford: Academic Press; 2014. p. 197–200.
  • Al Mardini H, Bartlett K, Record CO. Blood and brain concentrations of mercaptans in hepatic and methanethiol induced coma. Gut. 1984;25(3):284–90. doi: 10.1136/gut.25.3.284
  • Ng W, Tonzetich J. Effect of hydrogen sulfide and methyl mercaptan on the permeability of oral mucosa. J Dent Res. 1984;63(7):994–997. doi: 10.1177/00220345840630071701
  • Registry Aftsd. https://wwwatsdrcdcgov/MMG/MMGasp?id=221&tid=40.
  • Khan MAH, Whelan ME, Rhew RC. Analysis of low concentration reduced sulfur compounds (RSCs) in air: storage issues and measurement by gas chromatography with sulfur chemiluminescence detection. Talanta. 2012;88:581–586. doi: 10.1016/j.talanta.2011.11.038
  • Brühl C, Lelieveld J, Crutzen PJ, et al. The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmos Chem Phys. 2012;12(3):1239–1253. doi: 10.5194/acp-12-1239-2012
  • Abatzoglou N, Boivin S. A review of biogas purification processes. Biofuels Bioprod Biorefin. 2009;3(1):42–71. doi: 10.1002/bbb.117
  • Taheri A, Babakhani EG, Towfighi J. Methyl mercaptan removal from natural gas using MIL-53(Al). J Nat Gas Sci Eng. 2017;38:272–282. doi: 10.1016/j.jngse.2016.12.029
  • Jung SY, Moon JM, Lee SC, et al. The adsorption properties of organic sulfur compounds on zeolite-based sorbents impregnated with rare-earth metals. Adsorption. 2014;20(2):341–348. doi: 10.1007/s10450-013-9597-1
  • Conti-Ramsden MG, Nkrumah-Amoako K, Brown NW, et al. The oxidation of aqueous thiols on a graphite intercalation compound adsorbent. Adsorption. 2013;19(5):989–996. doi: 10.1007/s10450-013-9514-7
  • Cai W, Lu G, He J, et al. The adsorption feature and photocatalytic oxidation activity of K1−2xMxTiNbO5 (M = Mn, Ni) for methyl mercaptan in methane. Ceram Int. 2012;38(4):3167–3174. doi: 10.1016/j.ceramint.2011.12.020
  • Zheng T, Liu B, Wang A, et al. Degradation of methyl mercaptan by a microwave-induced photoreaction process. Chem Eng J. 2019;368:369–376. doi: 10.1016/j.cej.2019.02.156
  • Zhao S, Yi H, Tang X, et al. Methyl mercaptan removal from gas streams using metal-modified activated carbon. J Clean Prod. 2015;87:856–861. doi: 10.1016/j.jclepro.2014.10.001
  • Fakhri A, Naji M, Fatolahi L, et al. Synthesis and characterization of Fe3O4 and CdTe quantum dots anchored SnO2 nanofibers and SnO2 nanospheres for degradation and removal of two carcinogen substance. J Mater Sci Mater Electron. 2017;28(21):16484–16492. doi: 10.1007/s10854-017-7560-8
  • Sano T, Koike K, Hori T, et al. Removal of methyl mercaptan with highly-mobile silver on graphitic carbon-nitride (g-C3N4) photocatalyst. Appl Catal B. 2016;198:133–141. doi: 10.1016/j.apcatb.2016.05.057
  • Srivastava N, Majumder C. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater. 2008;151(1):1–8. doi: 10.1016/j.jhazmat.2007.09.101
  • Ganji M, Fereidoon A, Jahanshahi M, et al. Elastic properties of SWCNTs with curved morphology: density functional tight binding based treatment. Solid State Commun. 2012;152(16):1526–1530. doi: 10.1016/j.ssc.2012.06.005
  • Hamed Mashhadzadeh A, Ghorbanzadeh Ahangari M, Dadrasi A, et al. Theoretical studies on the mechanical and electronic properties of 2D and 3D structures of beryllium-oxide graphene and graphene nanobud. Appl Surf Sci. 2019;476:36–48. doi: 10.1016/j.apsusc.2019.01.083
  • Li X, Zhang J, Li J, et al. Investigation of the performance of ionic liquids of removal of mercaptan/methanol from light oil: a computational and experimental study. Fuel. 2019;239:502–510. doi: 10.1016/j.fuel.2018.11.052
  • Meshkat SS, Rashidi A, Tavakoli O. Removal of mercaptan from natural gas condensate using N-doped carbon nanotube adsorbents: kinetic and DFT study. J Nat Gas Sci Eng. 2018;55:288–297. doi: 10.1016/j.jngse.2018.04.036
  • Bo Z, Guo X, Wei X, et al. Density functional theory calculations of NO2 and H2S adsorption on the group 10 transition metal (Ni, Pd and Pt) decorated graphene. Physica E. 2019;109:156–163. doi: 10.1016/j.physe.2019.01.012
  • Meshkat SS, Tavakoli O, Rashidi A, et al. Adsorptive mercaptan removal of liquid phase using nanoporous graphene: equilibrium, kinetic study and DFT calculations. Ecotoxicol Environ Saf. 2018;165:533–539. doi: 10.1016/j.ecoenv.2018.08.110
  • Ghorbanzadeh Ahangari M, Fereidoon A, Hamed Mashhadzadeh A. Interlayer interaction and mechanical properties in multi-layer graphene, boron-nitride, aluminum-nitride and gallium-nitride graphene-like structure: a quantum-mechanical DFT study. Superlattices Microstruct. 2017;112:30–45. doi: 10.1016/j.spmi.2017.09.005
  • Ghorbanzadeh Ahangari M, Salmankhani A, Imani AH, et al. Density functional theory study on the mechanical properties and interlayer interactions of multi-layer graphene: carbonic, silicon-carbide and silicene graphene-like structures. Silicon. 2019;11(3):1235–1246. doi: 10.1007/s12633-018-9885-1
  • Hamed Mashhadzadeh A, Fathalian M, Ghorbanzadeh Ahangari M, et al. DFT study of Ni, Cu, Cd and Ag heavy metal atom adsorption onto the surface of the zinc-oxide nanotube and zinc-oxide graphene-like structure. Mater Chem Phys. 2018;220:366–373. doi: 10.1016/j.matchemphys.2018.09.016
  • Hamed Mashhadzadeh A, Ghorbanzadeh Ahangari M, Salmankhani A, et al. Density functional theory study of adsorption properties of non-carbon, carbon and functionalized graphene surfaces towards the zinc and lead atoms. Physica E. 2018;104:275–285. doi: 10.1016/j.physe.2018.08.010
  • Mashhadzadeh AH, Vahedi AM, Ardjmand M, et al. Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: a density functional theory study. Superlattices Microstruct. 2016;100:1094–1102. doi: 10.1016/j.spmi.2016.10.079
  • Ordejón P, Artacho E, Soler JM. Self-consistent order-$N$ density-functional calculations for very large systems. Physical Review B. 1996;53(16):R10441–R10444. doi: 10.1103/PhysRevB.53.R10441
  • Soler JM, Artacho E, Gale JD, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter. 2002;14(11):2745. doi: 10.1088/0953-8984/14/11/302
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Junquera J, Paz Ó, Sánchez-Portal D, et al. Numerical atomic orbitals for linear-scaling calculations. Physical Review B. 2001;64(23):235111. doi: 10.1103/PhysRevB.64.235111
  • Ganji M, Ahangari M, Emami S. Carborane-wheeled nanocar moving on graphene/graphyne surfaces: Van der Waals corrected density functional theory study. Mater Chem Phys. 2014;148(1–2):435–443. doi: 10.1016/j.matchemphys.2014.08.011
  • Hamed Mashhadzadeh A, Fereidoon A, Ghorbanzadeh Ahangari M. Combining density functional theory-finite element multi-scale method to predict mechanical properties of polypropylene/graphene nanocomposites: experimental study. Mater Chem Phys. 2017;201:214–223. doi: 10.1016/j.matchemphys.2017.08.042
  • Hamed Mashhadzadeh A, Fereidoon A, Ghorbanzadeh Ahangari M. Surface modification of carbon nanotubes using 3-aminopropyltriethoxysilane to improve mechanical properties of nanocomposite based polymer matrix: experimental and density functional theory study. Appl Surf Sci. 2017;420:167–179. doi: 10.1016/j.apsusc.2017.05.148
  • Jafari SA, Jahanshahi M, Ahangari MG. Platinum adsorption onto graphene and oxidized graphene: a quantum mechanics study. Mater Chem Phys. 2017;190:17–24. doi: 10.1016/j.matchemphys.2016.12.076
  • Khodadadi Z. Evaluation of H2S sensing characteristics of metals–doped graphene and metals-decorated graphene: insights from DFT study. Physica E. 2018;99:261–268. doi: 10.1016/j.physe.2018.02.022
  • Ganji M, Sharifi N, Ahangari MG. Adsorption of H2S molecules on non-carbonic and decorated carbonic graphenes: a van der Waals density functional study. Comput Mater Sci. 2014;92:127–134. doi: 10.1016/j.commatsci.2014.05.035
  • Gholami S, Shokuhi Rad A, Heydarinasab A, et al. Adsorption of adenine on the surface of nickel-decorated graphene; a DFT study. J Alloys Compd. 2016;686:662–668. doi: 10.1016/j.jallcom.2016.06.097
  • Ganji MD, Sharifi N, Ardjmand M, et al. Pt-decorated graphene as superior media for H2S adsorption: a first-principles study. Appl Surf Sci. 2012;261:697–704. doi: 10.1016/j.apsusc.2012.08.083

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.