176
Views
1
CrossRef citations to date
0
Altmetric
Articles

Naphthalimide derivatives containing benzyl-sulfur bond as cleavable photoinitiators for near-UV LED polymerization

, , , &
Pages 616-634 | Received 02 Feb 2020, Accepted 07 Jul 2020, Published online: 22 Jul 2020

References

  • Salata RR, Pellegrene B, Soucek MD. Visible light cure packages for improved drying kinetics in alkyd coatings. Prog Org Coat. 2020;144:105672. doi: 10.1016/j.porgcoat.2020.105672
  • Zhao S, Cui J, Zhu J, et al. Study on the preparation and anticorrosion properties of graphene photocurable coatings. Paint Ind. 2020;50:37–48.
  • Alig I, Lellinger D, Agarwal S, et al. Monitoring of photopolymerization kinetics and network formation by combined real-time near-infrared spectroscopy and ultrasonic reflectometry. React Funct Polym. 2013;73:316–322. doi: 10.1016/j.reactfunctpolym.2012.08.006
  • Zhang M, Jiang S, Gao Y, et al. Design of a disulfide bond-containing photoresist with extremely low volume shrinkage and excellent degradation ability for UV-nanoimprinting lithography. Chem Eng J. 2020;390:124625. doi: 10.1016/j.cej.2020.124625
  • He SS, Strickler AL, Frank CW. A Semi-Interpenetrating Network approach for Dimensionally Stabilizing Highly-Charged anion exchange membranes for alkaline fuel cells. ChemSusChem. 2015;8:1472–1483. doi: 10.1002/cssc.201500133
  • Federico B, Francesca C, Nair JR, et al. Photopolymer electrolytes for sustainable, upscalable, safe, and ambient-temperature sodium-ion secondary batteries. ChemSusChem. 2015;8:3668–3676. doi: 10.1002/cssc.201500873
  • Karasu F, Croutxé-Barghorn C, Allonas X, et al. Free radical photopolymerization initiated by UV and LED: towards UV stabilized, tack free coatings. J Polym Sci Pol Chem. 2014;52:3597–3607.
  • Zhang J, Frigoli M, Dumur F, et al. Design of novel photoinitiators for radical and cationic photopolymerizations under near UV and visible LEDs (385, 395, and 405 nm). Macromolecules. 2014;47:2811–2819. doi: 10.1021/ma500612x
  • Xiao P, Zhang J, Dumur F, et al. Visible light sensitive photoinitiating systems: recent progress in cationic and radical photopolymerization reactions under soft conditions. Prog Polym Sci. 2015;41:32–66. doi: 10.1016/j.progpolymsci.2014.09.001
  • Wu X, Malval JP, Wan D, et al. D-π-A-type aryl dialkylsulfonium salts as one-component versatile photoinitiators under UV/visible LEDs irradiation. Dyes Pigments. 2016;132:128–135. doi: 10.1016/j.dyepig.2016.04.004
  • Ganster B, Fischer UK, Moszner N, et al. New photocleavable structures. Diacylgermane-based photoinitiators for visible light curing. Macromolecules. 2008;41:2394–2400. doi: 10.1021/ma702418q
  • Durmaz YY, Moszner N, Yagci Y. Visible light initiated free radical promoted cationic polymerization using acylgermane based photoinitiator in the presence of onium salts. Macromolecules. 2008;41:6714–6718. doi: 10.1021/ma801208n
  • Ganster B, Fischer UK, Moszner N, et al. New photocleavable structures, 4 acylgermane-based photoinitiator for visible light curing. Macromol Rapid Comm. 2008;29:57–62. doi: 10.1002/marc.200700620
  • Tehfe M-A, Blanchard N, Fries C, et al. Bis(germyl)ketones: toward a new class of type I photoinitiating systems sensitive above 500 nm. Macromol Rapid Comm. 2010;31:473–478. doi: 10.1002/marc.200900695
  • Lalevée J, Blanchard N, Ali Tehfe M, et al. New thioxanthone and xanthone photoinitiators based on silyl radical chemistry. Polym Chem. 2011;2:1077–1084. doi: 10.1039/c0py00392a
  • Zhang J, Lalevée J, Mou X, et al. N-Phenylglycine as a versatile photoinitiator under near-UV LED. Macromolecules. 2018;51:3767–3773. doi: 10.1021/acs.macromol.8b00747
  • Zhang J, Xiao P, Morlet-Savary F, et al. A known photoinitiator for a novel technology: 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine for near UV or visible LED. Polym Chem. 2014;5:6019–6026. doi: 10.1039/C4PY00770K
  • Yu J, Gao Y, Jiang S, et al. Naphthalimide aryl sulfide derivative Norrish type I photoinitiators with excellent stability to sunlight under near-UV LED. Macromolecules. 2019;52:1707–1717. doi: 10.1021/acs.macromol.8b02309
  • Luo Y. Handbook of bond dissociation energies in organic compounds. Boca Raton (BR): CRC Press; 2002.
  • Turro NJ, Ramamurthy V, Scaiano JC. Modern molecular photochemistry of organic molecules. Sausalito: University Science Books, Viva Books; 2010.
  • Photoinitiator FJ. Photopolymerization and photocuring fundamentals application. New York (NY): Hanser Publishers; 1995.
  • Rehm D, Weller A. Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem. 1970;8:259–271. doi: 10.1002/ijch.197000029
  • Ma X, Gu R, Yu L, et al. Conjugated phenothiazine oxime esters as free radical photoinitiators. Polym Chem. 2017;8:6134–6142. doi: 10.1039/C7PY00797C
  • Kosar N, Mahmood T, Ayub K. Role of dispersion corrected hybrid GGA class in accurately calculating the bond dissociation energy of carbon halogen bond: a benchmark study. J Mol Struct. 2017;1150:447–458. doi: 10.1016/j.molstruc.2017.08.104
  • Hashikawa Y, Murata M, Wakamiya A, et al. Palladium-catalyzed cyclization: regioselectivity and structure of arene-fused C60 derivatives. J Am Chem Soc. 2017;139:16350–16358. doi: 10.1021/jacs.7b09459
  • Meshram G, Patil VD. Simple and efficient method for acetylation of alcohols, phenols, amines, and thiols using anhydrous NiCl2 under solvent-free conditions. Synthetic Commun. 2009;39:4384–4395. doi: 10.1080/00397910902906529
  • Park N, Park K, Jang M, et al. One-pot synthesis of symmetrical and unsymmetrical aryl sulfides by Pd-catalyzed couplings of aryl halides and thioacetates. J Org Chem. 2011;76:4371–4378. doi: 10.1021/jo2007253
  • Zhang J, Dumur F, Xiao P, et al. Structure design of naphthalimide derivatives: toward versatile photoinitiators for near-UV/visible LEDs, 3D printing, and water-soluble photoinitiating systems. Macromolecules. 2015;48:2054–2063. doi: 10.1021/acs.macromol.5b00201
  • Sarker AM, Sawabe K, Strehmel B, et al. Synthesis of polymeric photoinitiators containing pendent chromophorc−borate ion pairs: photochemistry and photopolymerization activities. Macromolecules. 1999;32:5203–5209. doi: 10.1021/ma990127c
  • da Silva G, Bozzelli JW. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study. Phys Chem Chem Phys. 2012;14:16143–16154. doi: 10.1039/c2cp42635h
  • Pelucchi M, Cavallotti C, Faravelli T, et al. H-abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation. Phys Chem Chem Phys. 2018;20:10607–10627. doi: 10.1039/C7CP07779C
  • Zheng C, Lu F, Lu H, et al. Copper-catalyzed selective radical–radical cross-coupling for C–S bond formation: an access to α-alkylthionitriles. Chem Commun. 2018;54:5574–5577. doi: 10.1039/C8CC02371A
  • Tona M, Guardiola M, Fajarí L, et al. A study on the mechanism and scope of the radical-mediated oxidation of arylacetoacetates. Tetrahedron. 1995;51:10041–10052. doi: 10.1016/0040-4020(95)00576-T
  • Yadav N, Sagir H, Ansari M D, et al. Visible-light-mediated synthesis of 4H-benzo[1,4]thiazin-2-amines and 3,4-dihydroquinoxalin-2-amines: an efficient and metal free route to C–S, C–N bond formation. Catal Lett. 2018;148:1676–1685. doi: 10.1007/s10562-018-2388-2
  • Guo S, Jie K, Zhang Z, et al. Regioselective C3-phosphonation of free indoles via transition-metal-free radical/hydrolysis cascade. Eur J Org Chem. 2019;2019:1808–1814. doi: 10.1002/ejoc.201801889
  • Luo S, Cao J, McDonaldc A G. Cross-linking of technical lignin via esterification and thermally initiated free radical reaction. Ind Crop Prod. 2018;121:169–179. doi: 10.1016/j.indcrop.2018.05.007
  • Xiao P, Dumur F, Graff B, et al. Blue light sensitive dyes for various photopolymerization reactions: naphthalimide and naphthalic anhydride derivatives. Macromolecules. 2014;47:601–608. doi: 10.1021/ma402376x
  • Riyad YM. Thioanisole triplet: laser flash photolysis and pulse radiolysis studies. J Photoch Photobio A. 2017;335:294–299. doi: 10.1016/j.jphotochem.2016.12.007
  • Fouassier JP, Lalevée J. Photoinitiators for polymer synthesis-scope, reactivity, and efficiency. Weinheim: Wiley-VCH Verlag GmbH & Co KGaA; 2012.
  • Jin M, Zhou R, Yu M, et al. D-π-a-type oxime sulfonate photoacid generators for cationic polymerization under UV–visible LED irradiation. J Polym Sci Pol Chem. 2018;56:1146–1154. doi: 10.1002/pola.28996
  • Suga T, Shimazu S, Ukaji Y. Low-valent titanium-mediated radical conjugate addition using benzyl alcohols as benzyl radical sources. Org Lett. 2018;20:5389–5392. doi: 10.1021/acs.orglett.8b02305
  • Yu K, Guan S, Zhang H, et al. Research progress of organic photoluminescent materials. Nat Sci J Harbin Normal Univ. 2006;3:70–73.
  • Geng K. New photoluminescent polymer materials. New Chem Mater. 1995;1:33–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.