343
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Copper-Catalyzed direct thioetherification of Alkyl Halides with S-Alkyl Butanethioate as Thiol transfer reagent

, &
Pages 1-11 | Received 10 May 2021, Accepted 07 Aug 2021, Published online: 25 Aug 2021

References

  • Beletskaya IP, Ananikov VP. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. Chem Rev. 2011;111:1596–1636.
  • Matsumoto K, Sugiyama H. Organometallic-like C-H bond activation and C-S bond formation on the disulfide bridge in the RuSSRu core complexes. Acc Chem Res. 2002;35:915–926.
  • Shen C, Zhang P, Sun Q, et al. Recent advances in C–S bond formation via C-H bond functionalization and decarboxylation. Chem Soc Rev. 2015;44:291–314.
  • Sundaravelu N, Sangeetha S, Sekar G. Metal-catalyzed C-S bond formation using sulfur surrogates. Org Biomol Chem. 2021;19:1459–1482.
  • Uozumi Y, Niimi R. Photocatalytic C-C bond cleavage of lignin model compounds on silver-doped cadmium sulfide NPs. Synfacts. 2020;16:1331.
  • Singh AS, Agrahari AK, Mishra N, et al. An improved n-acylation of 1H-benzotriazole using 2,2’-dipyridyl-di-sulfide and triphenylphosphine. Synthesis (Mass). 2019;51:470–476.
  • Lou J, Wang QN, Wu P, et al. Transition-metal mediated carbon-sulfur bond activation and transformations: an update. Chem Soc Rev. 2020;49:4307–4359.
  • Wang LD, He W, Yu ZK. Transition-metal mediated carbon-sulfur bond activation and transformations. Chem Soc Rev. 2013;42:599–621.
  • Desnoyer AN, Love JA. Recent advances in well-defined, late transition metal complexes that make and/or break C–N, C–O and C–S bonds. Chem Soc Rev. 2017;46:197–238.
  • Denes F, Pichowicz M, Povie G, et al. Thiyl radicals in organic synthesis. Chem Rev. 2014;114:2587–2693.
  • Lu QQ, Zhang J, Wei FL, et al. Aerobic oxysulfonylation of alkenes leading to secondary and tertiary β-hydroxysulfones. Angew Chem Int Ed. 2013;52:7156–7159.
  • Xi YM, Dong BL, McClain EJ, et al. Gold-catalyzed intermolecular C-S bond formation: efficient synthesis of α-substituted vinyl sulfones. Angew Chem Int Ed. 2014;53:4657–4661.
  • Chen Y, Wang JK. Solubility of clindamycin phosphate in binary water-ethanol solvent. J Chem Eng Data. 2007;52:1908–1910.
  • Raghavan S, Krishnaiah V, Sridhar B. Asymmetric synthesis of the potent HIV-protease inhibitor, nelfinavir. J Org Chem. 2010;75:498–501.
  • Lee CF, Liu YC, Badsara SS. Transition-metal-catalyzed C-S bond coupling reaction. Chem Asian J. 2014;9:706–722.
  • Hartwig JF. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc Chem Res. 2008;41(11):1534–1544.
  • Bandaru SSM, Bhilare S, Cardozo J, et al. Pd/PTABS: low-temperature thioetherification of chloro(hetero)arenes. J Org Chem. 2019;84:8921–8940.
  • Velasco N V, Sanz R, et al. General synthesis of alkenyl sulfides by palladium-catalyzed thioetherification of alkenyl halides and tosylates. Org Lett. 2018;20:2848–2852.
  • Vaddamanu M, Velappan K, Prabusankar G. Homoleptic and heteroleptic Zn(II) selone catalysts for thioetherification of aryl halides without scrubbing oxygen. New J Chem. 2020;44:3574–3583.
  • Jouffroy M, Kelly CB, Molander GA. Thioetherification viaphotoredox/nickel dual catalysis. Org Lett. 2016;18:876–879.
  • Jones KD, Power DJ, Bierer D, et al. Nickel phosphite/phosphine-catalyzed C-S cross-coupling of aryl chlorides and thiols. Org Lett. 2018;20:208–211.
  • Kondo T, Mitsudo TA. Metal-catalyzed carbon-sulfur bond formation. Chem Rev. 2000;100:3205–3220.
  • Jiang LQ, Qian JL, Yi WB, et al. Direct trifluoromethylthiolation and perfluoroalkylthiolation of C(sp2)-H bonds with CF3SO2Na and RfSO2Na. Angew Chem Int Ed. 2015;54:14965–14969.
  • Xiao FH, Chen SQ, Tian JX, et al. Chemoselective cross-coupling reaction of sodium sulfinates with phenols under aqueous conditions. Green Chem. 2016;18:1538–1546.
  • Sohan L, Arindrajit C, Neeraj K, et al. Synthesis and energetic properties of homocubane based high energy density material. Org Chem Front. 2021;8:531–548.
  • Zhu MY, Diao GW. Magnetically recyclable pd nanoparticles immobilized on magnetic Fe3O4@c nanocomposites: preparation, characterization, and their catalytic activity toward suzuki and heck coupling reactions. J Phys Chem C. 2011;115:24743–24749.
  • Lin YM, Lu GP, Wang GX, et al. Acid/phosphide-induced radical route to alkyl and alkenyl sulfides and phosphonothioates from sodium arylsulfinates in water. J Org Chem. 2017;82:382–389.
  • Liu T, Qiu RH, Zhu LZ, et al. Alkyl sulfides as promising sulfur sources: metal-free synthesis of aryl alkyl sulfides and dialkyl sulfides by transalkylation of simple sulfides with alkyl halides. Chem Asian J. 2018;13:3833–3837.
  • Ghaderi A. Advances in transition-metal catalyzed thioetherification reactions of aromatic compounds. Tetrahedron. 2016;72:4758–4782.
  • Park N, Park K, Jang M, et al. One-pot synthesis of symmetrical and unsymmetrical aryl sulfides by Pd-catalyzed couplings of aryl halides and thioacetates. J Org Chem. 2011;76:4371–4378.
  • KeF QY, Jiang ZQ, et al. An efficient copper-catalyzed carbon−sulfur bond formation protocol in water. Org Lett. 2011;13:454–457.
  • Qiao ZJ, Liu H, Xiao X, et al. Efficient access to 1,4-benzothiazine: palladium-catalyzed double C-S bond formation using Na2S2O3 as sulfurating reagent. Org Lett. 2013;15:2594–2597.
  • Jiang YW, Qin YX, Xie SW, et al. A general and efficient approach to aryl thiols: Cu(I)-catalyzed coupling of aryl iodides with sulfur and subsequent reduction. Org Lett. 2009;11:5250–5253.
  • Bogonda G, Patil DV, Kim HY, et al. Visible-light-promoted thiyl radical generation from sodium sulfinates: a radical-radical coupling to thioesters. Org Lett. 2019;21:3774–3779.
  • Ishitobi K, Muto K, Yamaguchi J. Pd-catalyzed alkenyl thioether synthesis from thioesters and n-tosylhydrazones. ACS Catal. 2019;9:11685–11690.
  • Date S, Hamasaki K, Sunagawa K, et al. Catalytic direct cyclization of alkenyl thioester. ACS Catal. 2020;10:2039–2045.
  • Fang Y, Rogge T, Ackermann L, et al. Nickel-catalyzed reductive thiolation and selenylation of unactivated alkyl bromides. Nature Comm. 2018;9:2240.
  • Li YH, Gao B, Wu XF. Palladium-catalyzed intermolecular transthioetherification of aryl halides with thioethers and thioesters. Chem Sci. 2020;11:2187–2192.
  • Wong YC, Jayanth TT, Cheng CH. Cobalt-catalyzed aryl-sulfur bond formation. Org Lett. 2006;8:5613–5616.
  • Chen YC, Su L, Gong HG. Copper-catalyzed and indium-mediated methoxycarbonylation of unactivated alkyl iodides with balloon CO. Org Lett. 2019;21:4689–4693.
  • Yang H, Li H, Wittenberg R, et al. Ambient temperature synthesis of high enantiopurity n-protected peptidyl ketones by peptidyl thiol ester-boronic acid cross-coupling. J Am Chem Soc. 2007;129:1132–1140.
  • Kristensen SK, Laursen SLR, Taarning E, et al. Exsitu formation of methanethiol: application in the gold(I)-promoted anti-markovnikov hydrothiolation of olefins. Angew Chem Int Ed. 2018;57:13887–13891.
  • Jean M, Renault J, van de Weghe P, et al. Gold-catalyzed C-S bond formation from thiols. Tetrahedron Lett. 2010;51:378–381.
  • Nguyen KN, Duus F, Luu TXT. Benign and efficient preparation of thioethers by solvent-free S-alkylation of thiols with alkyl halides catalyzed by potassium fluoride on alumina. J Sulfur Chem. 2016;37:349–360.
  • Sakai N, Miyazaki T, Sakamoto T, et al. Single-step thioetherification by indium-catalyzed reductive coupling of carboxylic acids with thiols. Org Lett. 2012;14:4366–4369.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.