55
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quantum chemical study of tautomeric equilibriums, intramolecular hydrogen bonds, and π-electron delocalization in the first singlet and triplet excited states of 2-selenoformyl-3-thioxo-propionaldehyde

, , , &
Pages 432-446 | Received 15 Aug 2022, Accepted 17 Jan 2023, Published online: 27 Feb 2023

References

  • Desiraju GR, Steiner T. The weak hydrogen bond: in structural chemistry and biology (Vol. 9). Oxford: International Union of Crystal; 2001.
  • Gilli G, Gilli P. The nature of hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford: Oxford University Press; 2009.
  • Zhao GJ, Han KL. Time-dependent density functional theory study on hydrogen-bonded intramolecular charge-transfer excited state of 4-dimethylamino-benzonitrile in methanol. J Comput Chem. 2008;29:2010–2017.
  • Jeffrey GA, Jeffrey GA. An introduction to hydrogen bonding (Vol. 12). New York: Oxford University Press; 1997.
  • Grabowski SJ. Hydrogen bonding—new insights. Dordrecht: Springer; 2006.
  • Alkorta I, Elguero J, Mó O, et al. Do coupling constants and chemical shifts provide evidence for the existence of resonance-assisted hydrogen bonds? Mol Phys. 2004;102:2563–2574.
  • Sanz P, Mó O, Yáñez M, et al. Resonance-Assisted hydrogen bonds:  a critical examination. structure and stability of the enols of β-diketones and β-enaminones. J Phys Chem A. 2007;111:3585–3591.
  • Trujillo C, Sánchez-Sanz G, Alkorta I, et al. Resonance assisted hydrogen bonds in open-chain and cyclic structures of malonaldehyde enol: A theoretical study. J Mol Struct. 2013;1048:138–151.
  • Muravev AA, Ovsyannikov AS, Konorov GV, et al. Antipin IS. thermodynamic vs. kinetic control in synthesis of O-donor 2, 5-substituted furan and 3, 5-substituted pyrazole from heteropropargyl precursor. Molecules. 2022;27:5178.
  • Muravev A, Gerasimova T, Fayzullin R, et al. Thermally stable nitrothiacalixarene chromophores: conformational study and aggregation behavior. Int J Mol Sci. 2020;21:6916.
  • Latypov SK, Kharlamov SV, Muravev AA, et al. Conformational diversity and dynamics of distally disubstituted calix and thiacalix [4] arenes in solution. J Phys Org Chem. 2013;26:407–414.
  • Murav’ev AA, Galieva FB, Strel’nik AG, et al. Synthesis and structure of lower rim-substituted alkynyl derivatives of thiacalix [4] arene. Russ J Org Chem. 2015;51:1334–1342.
  • Emsley J. The composition, structure and hydrogen bonding of the β-diketones. In Complex chemistry (pp. 147-191). Springer, Berlin, Heidelberg; (1984).
  • Woodford JN. Density functional theory and atoms-in-molecules investigation of intramolecular hydrogen bonding in derivatives of malonaldehyde and implications for resonance-assisted hydrogen bonding. J Phys Chem A. 2007;111:8519–8530.
  • Nowroozi A, Raissi H. Strong intramolecular hydrogen bond in triformylmethane ab-initio, AIM and NBO study. J Mol Struct THEOCHEM. 2006;759:93–100.
  • Čuma M, Thompson C, Scheiner S. Effect of nonproximate atomic substitution on excited state intramolecular proton transfer. J Comput Chem. 1998;19:129–138.
  • Luth K, Scheiner S. Excited-state energetics and proton-transfer barriers in malonaldehyde. J Phys Chem. 1994;98:3582–3587.
  • Scheiner S. Theoretical studies of excited state proton transfer in small model systems. J Phys Chem A. 2000;104:5898–5909.
  • Scheiner S, Kar T, Cuma M. Excited state intramolecular proton transfer in anionic analogues of malonaldehyde. J Phys Chem A. 1997;101:5901–5909.
  • Sobolewski AL, Domcke W. Photophysics of malonaldehyde: an ab initio study. J Phys Chem A. 1999;103:4494–4504.
  • Sobolewski AL, Domcke W. Conical intersections induced by repulsive 1πσ* states in planar organic molecules: malonaldehyde,: pyrrole and chlorobenzene as photochemical model systems. Chem Phys. 2000;259:181–191.
  • Barone V, Adamo C. Proton transfer in the ground and lowest excited states of malonaldehyde: a comparative density functional and post-hartree–fock study. Chem Phys. 1996;105:11007–11019.
  • Coe JD, Martı´nez TJ. Ab initio molecular dynamics of excited-state intramolecular proton transfer around a three-state conical intersection in malonaldehyde. J Phys Chem A. 2006;110:618–630.
  • Delchev VB. “Face-to-back” photo-cyclodimerization of the malonaldehyde enol form with the strong intramolecular H-bond: A TD-DFT theoretical study. J. Mol. Struct: THEOCHEM. 2010;958:101–105.
  • Shayan K, Nowroozi A. The first singlet excited state (S1) intramolecular hydrogen bond of malonaldehyde derivatives: a TD-DFT and CIS study. Struct Chem. 2016;27:1769–1780.
  • Nowroozi A, Tayyari SF, Rahemi H. Fourier transforms infrared spectra and structure of triformylmethane. A density functional theoretical study. Spectrochim Acta A Mol Biomol Spectrosc. 2003;59:1757–1772.
  • Rafat R, Nowroozi A. Solvent effects on the molecular stability,: intramolecular hydrogen bond, and π-electron delocalization in the simple RAHB systems with different donors and acceptors: a quantum chemical study. Struct Chem. 2018;30:777–785.
  • Rafat R, Nowroozi A. A comprehensive theoretical study of conformational analysis,: intramolecular hydrogen bond, π-electron delocalization, and tautomeric preferences in 2-selenoformyl-3-thioxo-propionaldehyde. Struct Chem. 2018;29:1057–1065.
  • An B, Yuan H, Zhu Q, et al. Theoretical insight into the excited-state intramolecular proton transfer mechanisms of three amino-type hydrogen-bonding molecules. Spectrochim Acta A Mol Biomol Spectrosc. 2017;175:36–42.
  • Mbakara I, Gajewska A, Listkowski A, et al. Spectroscopic investigation of photophysics and tautomerism of amino-and nitroporphycenes. Phys Chem Chem Phys. 2022;24:29655–29666.
  • De Carvalho F, Coutinho Neto MD, Bartoloni FH, et al. Density functional theory applied to excited state intramolecular proton transfer in imidazole-,: oxazole-, and thiazole-based systems. Molecules. 2018;23:1231.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision D. 01. (2009).
  • Halgren TA, Lipscomb WN. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett. 1977;49:225–232.
  • Espinosa E, Molins E. Retrieving interaction potentials from the topology of the electron density distribution: the case of hydrogen bonds. Chem Phys. 2000;113:5686–5694.
  • Palatinus L, Prathapa SJ, Smaalen SV. EDMA: a computer program for topological analysis of discrete electron densities. J Appl Crystallogr. 2012;45:575–580.
  • Glendening ED, Badenhoop JK, Weinhold F. Natural resonance theory: III. Chemical applications. J Comput Chem. 1998;19:628–646.
  • Gilli G, Bellucci F, Ferretti V, et al. Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the. β-diketone fragment. J Am Chem Soc. 1989;111:1023–1028.
  • Schuster P, Zundel G, Sandorfy C. The hydrogen bond: theory. North-Holland: American Elsevier Pub. Co.; 1976.
  • Nowroozi A, Raissi H, Farzad F. The presentation of an approach for estimating the intramolecular hydrogen bond strength in conformational study of β-aminoacrolein. J Mol Struct THEOCHEM. 2005;730:161–169.
  • Buemi G, Zuccarello F. DFT study of the intramolecular hydrogen bonds in the amino and nitro-derivatives of malonaldehyde. Chem. Phys. 2004;306:115–129.
  • Rozas I, Alkorta I, Elguero J. Intramolecular hydrogen bonds in o rtho-substituted hydroxybenzenes and in 8-susbtituted 1-hydroxynaphthalenes: Can a methyl group Be an acceptor of hydrogen bonds? J Phys Chem A. 2001;105:10462–10467.
  • Nowroozi A, Raissi H, Hajiabadi H, et al. Reinvestigation of intramolecular hydrogen bond in malonaldehyde derivatives: An ab initio,: AIM and NBO study. Int J Quantum Chem. 2011;111:3040–3047.
  • Nowroozi A, Hajiabadi H, Akbari F. OH···O and OH···S intramolecular interactions in simple resonance-assisted hydrogen bond systems: a comparative study of various models. Struct Chem. 2014;25:251–258.
  • Bader RFW. Atoms in molecules: A quantum theory. Oxford: Clarendon; 1990.
  • Shainyan BA, Chipanina NN, Aksamentova TN, et al. Intramolecular hydrogen bonds in the sulfonamide derivatives of oxamide,: dithiooxamide, and biuret. FT-IR and DFT study, AIM and NBO analysis. Tetrahedron. 2010;66:8551–8556.
  • Weinhold F. Discovering chemistry with natural bond orbitals. Hoboken: John Wiley & Sons; 2012.
  • Krygowski TM, Stepion BT. Sigma- and π-electron delocalization: focus on substituent effects. Chem Rev. 2005;105:3482–3512.
  • Krygowski TM, Cyranski MK. Structural aspects of aromaticity. Chem Rev. 2001;101:1385–1420.
  • Poater J, Duran M, Sola M, et al. Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev. 2005;105:3911–3947.
  • Sobczyk L, Grabowski SJ, Krygowski TM. Interrelation between H-bond and Pi-electron delocalization. Chem Rev. 2005;105:3513–3560.
  • Nakhaei E, Nowroozi A. On the performance of resonance assisted hydrogen bond theory in malonaldehyde derivatives. Comput Theor Chem. 2016;1096:27–32.
  • Gilli P, Bertolasi V, Pretto L, et al. Covalent versus electrostatic nature of the strong hydrogen bond: discrimination among single,: double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in β-diketone enol RAHB systems. J Am Chem Soc. 2004;126:3845–3855.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.