279
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Benzodithiophene (BDT) and benzodiselenophene (BDSe) isomers’ charge transport properties for organic optoelectronic devices

, , ORCID Icon & ORCID Icon
Pages 462-478 | Received 21 Sep 2022, Accepted 03 Jan 2023, Published online: 02 Feb 2023

References

  • Lu L, Zheng T, M. Schneider A, et al. Recent advances in bulk heterojunction polymer solar cells. Chem Rev. 2015;115:12666–12731.
  • Dou L, Liu Y, Hong Z, et al. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem Rev. 2015;115:12633–12665.
  • Wang C, Dong H, Hu W, et al. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev. 2012;112:2208–2267.
  • Mishra A, Ma C, Bauerle P, et al. Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem Rev. 2009;109:1141–1276.
  • Bronstein H. Optimisation of diketopyrrolopyrrole: fullerene solar cell performance through control of polymer molecular weight and thermal annealing. J Am Chem Soc. 2011;133:3272–3275.
  • Zou Y, Najari A, Beaupre S, et al. A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. J Am Chem Soc. 2010;132:5330–5331.
  • Zhou E, Nakamura M, Nishizawa T, et al. Synthesis and photovoltaic properties of a novel low band gap polymer based on N-substituted dithieno[3,2-b:2’,3'-d]pyrrole. Macromolecules. 2008;41:8302–8305.
  • de Bettignies R, Nicolas Y, Blanchard P, et al. Planarized star-shaped oligothiophenes as a new class of organic semiconductors for heterojunction solar cells. J Adv Mater. 2003;15:1939–1943.
  • Chen MX, Perzon E, Robisson N, et al. Low band gap donor-acceptor-donor polymers for infra-red electroluminescence and transistors. Synth Met. 2004;146:233–236.
  • Mazzeo M, Vitale V, Della Sala F, et al. New branched thiophene-based oligomers for bright organic light-emitting devices. Adv Mater. 2003;15:2060–2063.
  • Zhang G, Zhu M, Guo J, et al. Benzodithiophene and benzotrithiophene-based conjugated polymers for organic thin-film transistors application: impact of conjugated-and acyl-side chain. Org Electr. 2014;15:2608–2615.
  • Guo X, Reddy Puniredd S, Baumgarten M, et al. Rational design of benzotrithiophene-diketopyrrolopyrrole-containing donor-acceptor polymers for improved charge carrier transport. Adv Mater. 2013;25:5467–5472.
  • Patra D, Huang T, Chiang C, et al. 2-Alkyl-5-thienyl-Substituted benzo[1,2-b:4,5-b′]dithiophene-based donor molecules for solution-processed organic solar cells. ACS Appl Mater Interfaces. 2013;5:9494–9500.
  • Yamamoto T, Takimiya K. Facile synthesis of highly π-extended heteroarenes, dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]chalcogenophenes, and their application to field-effect transistors. J Am Chem Soc. 2007;129:2224–2225.
  • Takimiya K, Kunugi Y, Toyoshima Y, et al. 2,6-Diarylnaphtho[1,8-bc:5,4-b‘c‘]dithiophenes as new high-performance semiconductors for organic field-effect transistors. J Am Chem Soc. 2005;127:3605–3612.
  • Taerum T, Lukoyanova O, Wylie RG, et al. Synthesis, polymerization, and unusual properties of new star-shaped thiophene oligomer. Org Lett. 2009;11:3230–3233.
  • Beaujuge PM, Ellinger S, Reynolds JR The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat Mater. 2008;7:795–799.
  • Yao H, Ye L, Zhang H, et al. Molecular design of benzodithiophene-based organic photovoltaic materials. Chem Rev. 2016;116:7397–7457.
  • Wu Y, Li Z, Ma W, et al. PDT-S-T: A new polymer with optimized molecular conformation for controlled aggregation and π–π stacking and its application in efficient photovoltaic devices. Adv Mater. 2013;25:3449–3455.
  • Pelkey ET. Selenophenes. In: Katritzky AR, Ramsden CA, Scriven EFV, et al., editors. Comprehensive heterocyclic chemistry III. Oxford: Elsevier; 2008, p. 975–1006.
  • Somasundaram S, Jeon S, Park S. Triphenylamine and benzothiadiazole-based D-A-A’ and A’-A-D-D-A-A’ type small molecules for solution-processed organic solar cells. Macromol Res. 2016;24:226–234.
  • Ha Y-H, Lee JE, Hwang MC, et al. A new BDT-based conjugated polymer with donor-donor composition for bulk heterojunction solar cell. Macromol Res. 2016;24:457–462.
  • Kim HY, Choi MH, Han YW, et al. Deep HOMO polymers comprising anthracene units for bulk heterojunction solar cells. J Ind Eng Chem. 2016;33:209–220.
  • Gasparini N, Lucera L, Salvador M, et al. High-performance ternary organic solar cells with thick active layer exceeding 11% efficiency. Energy Environ Sci. 2017;10:885–892.
  • Deng D, Yajie Z, Jianqi Z, et al. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat Commun. 2016;7:13740.
  • Perepichka IF, Perepichka DF, editor. Handbook of thiophene-based materials: applications in organic electronics and photonics. Chichester: Wiley; 2009. p. 695–756.
  • Bleiholder C, Gleiter R, Werz DB, et al. Theoretical investigations on heteronuclear chalcogen−chalcogen interactions: On the nature of weak bonds between chalcogen centers. Inorg Chem. 2007;46:2249–2260.
  • Bleiholder C, Werb DB, Koppel H, et al. Theoretical investigations on chalcogen−chalcogen interactions: what makes these nonbonded interactions bonding? J Am Chem Soc. 2006;128:2666–2674.
  • Liu Y, Dr CD, Du C, et al. Synthesis,: structures, and properties of fused thiophenes for organic field-effect transistors. Chem Eur J. 2010;16:2231–2239.
  • Jiang W, Zhou Y, Geng H, et al. Solution-Processed, high-performance nanoribbon transistors based on dithioperylene. J Am Chem Soc. 2011;133:1–3.
  • Sun Z, Feng S, Ding W, et al. Probing the effect of acceptor engineering in benzothiadiazole-based D-A-D-typed hole-transporting materials for perovskite solar cells. Synth Metals. 2022;289:117136.
  • Sun Z, Feng S, Ding W, et al. Azatriphenylene-based D-A-D-typed hole-transporting materials for perovskite solar cells with tunable energy levels and high mobility. Sol Energy. 2021;224:491–499.
  • Sun Z, Yang J, Ding W, et al. Structural engineering of FDT toward promising spiro-typed hole-transporting materials: promoting the hole transport and stabilizing the HOMO levels. J Phys Chem C. 2022;126:11529–11536.
  • Tripathi A, Prabhakar C. Enhanced charge transport properties in heteroatomic (NH, O, Se) analogs of benzotrithiophene (BTT) isomers: a DFT insight. J Mol Sim. 2020;46:548–556.
  • Tripathi A, Kozaderov O, Shikhaliev K, et al. A DFT study on optical, electronic, and charge transport properties of star-shaped benzo[1,2-b:3,4-b′:5,6-b″]trithiophene oligomers. J Phys Org Chem. 2020;33:e4037.
  • Tripathi A, Kumar V, Prabhakar C. Stability, optical and charge transport properties of saddle-shaped cyclooctatetrathiophene (COTh)isomers: a theoretical study. J Sulfur Chem. 2021;43:180–192.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16W, revision B.01. Wallingford (CT): Gaussian, Inc.; 2016.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648.
  • Lee C, Yang W, Parr RG Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785.
  • Marcus RA, Sutin N. Electron transfers in chemistry and biology. Biochim Biophys Acta. 1985;811:265–322.
  • Mikkelsen KV, Ratner MA. Electron tunneling in solid-state electron-transfer reactions. Chem Rev. 1987;87:113–153.
  • McMahon DP, Troisi A. Evaluation of the external reorganization energy of polyacenes. J Phys Chem Lett. 2010;1:941–946.
  • Tripathi A, Kumar V, Prabhakar C. Impact of internal (donor/acceptor) moieties and π-spacer in triphenylamine-based dyes for DSSCs. J Photochem Photobiol A Chem. 2022;426:113738.
  • Tripathi A, Prabhakar C. Impact of heteroatom (S and N) position and change in central ring of anthracene with heterocyclic ring on charge transport and optical properties in anthratetrathiazole (ATTz). J Sulfur Chem. 2019;40:361–376.
  • Tripathi A, Prabhakar C. Optoelectronic properties of benzotrithiophene isomers: a density functional theory study. J Chin Chem Soc. 2019;66:891–898.
  • Schleyer PVR, Maerker C, Dransfeld A, et al. Nucleus-Independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc. 1996;118:6317–6318.
  • Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry,: thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–241.
  • Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393:51–57.
  • Note that these are the half-and-half functionals (included for backward compatibility only) implemented in Gaussian 16 (ref. [63]) which are not the same as the ones proposed in: Becke AD. A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys. 1993;98:1372B.
  • Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. J Chem Phys. 2008;128:084106.
  • Kellog RM, Groen MB, Wynberg H. Photochemically induced cyclization of some furyl- and thienylethenes. J Org Chem. 1967;32(10):3093–3100.
  • Dahlgren T, Glans J, Gronowitz S, et al. Electronic spectra of dithieno analogues of phenanthrene. Chem Phys. 1979;40:397–404.
  • Takimiya K, Konda Y, Ebata H, et al. Facile synthesis, structure, and properties of benzo[1,2-b:4,5-b¢]dichalcogenophenes. J Org Chem. 2005;70:10569–10571.
  • Malagoli M, Bredas JL. Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem Phys Lett. 2000;327:13–17.
  • Lin BC, P. Cheng C, You ZQ, et al. Charge transport properties of tris(8-hydroxyquinolinato) aluminum (III): why it is an electron transporter. J Am Chem Soc. 2005;127:66–67.
  • Irfan A, Cui R, Zhang J Toward rational designing of n-type materials: theoretical investigations of mer-Alq3 derivatives. J Mol Struct Theochem. 2010;956:61–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.