184
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

DFT study of the adsorption of simple organic sulfur gases on g-C3N4; periodic and non-periodic approaches

, , ORCID Icon &
Pages 733-750 | Received 13 Mar 2023, Accepted 26 Apr 2023, Published online: 20 May 2023

References

  • Wu T, Wang X, Li D, et al. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmos Environ. 2010;44:5065–71.
  • Lay MD, Sauerhoff MW, Saunders DR, et al. Ullmann's encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2000.
  • Blake NJ, Streets DG, Woo JH, et al. Carbonyl sulfide and carbon disulfide: Large-scale distributions over the western Pacific and emissions from Asia during TRACE-P. J Geophys Res Atmos. 2004;109.
  • Carbon disulfide. Air quality guidelines for Europe. Copenhagen. Denmark: World Health Organization. Regional Office for Europe; 2000.
  • Crutzen PJ. The possible importance of CSO for the sulfate layer of the stratosphere. Geophys Res Lett. 1976;3:73–6.
  • Montzka S, Aydin M, Battle M, et al. A 350-year atmospheric history for carbonyl sulfide inferred from antarctic firn air and air trapped in ice. J Geophys Res Atmos. 2004;109.
  • Seinfeld J, Pandis S. Atmospheric chemistry and physics. London: J. Wiley; 2006.
  • Pos W, Berresheim H. Automotive tire wear as a source for atmospheric OCS and CS2. Geophys Res Lett. 1993;20:815–7.
  • Hiller H, Reimert R, Marschner F, et al. Gas production. Ullmann's encyclopedia of industrial chemistry. 2000.
  • Bartholomaeus AR, Haritos VS. Review of the toxicology of carbonyl sulfide, a new grain fumigant. Food Chem Toxicol. 2005;43:1687–701.
  • Tansy MF, Kendall FM, Fantasia J, et al. Acute and subchronic toxicity studies of rats exposed to vapors of methyl mercaptan and other reduced-sulfur compounds. J Toxicol Environ Health. 1981;8:71–88.
  • Reid EE. Organic chemistry of bivalent sulfur. New York: Chemical Publishing Company; 1958.
  • Norell J, Louthan RP. Thiols. kirk-othmer concise encyclopedia of chemical technology 3rd ed. New York: John Wiley & Sons; 1988.
  • Tenkrat D, Prokes O, Hlincik T. Natural gas odorization. INTECH Open Access Publisher; 2010.
  • Devos M, Patte F, Rouault J, et al. Standardized human olfactory thresholds. Oxford: IRL Press; 1990.
  • Chiang HL, Tsai JH, Tsai CL, et al. Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S, and CH3SH gas. Sep Sci Technol. 2000;35:903–18.
  • Jackson GJ, Woodruff DP, Jones RG, et al. Following local adsorption sites through a surface chemical reaction: CH3SH on Cu(111). Phys Rev Lett. 2000;84:119–22.
  • Sahibed-Dine A, Aboulayt A, Bensitel M, et al. IR study of CS2 adsorption on metal oxides: relation with their surface oxygen basicity and mobility. J Mol Catal A Chem. 2000;162:125–34.
  • Bashkova S, Bagreev A, Bandosz TJ. Adsorption of methyl mercaptan on activated carbons. Environ Sci Technol. 2002;36:2777–82.
  • Bashkova S, Bagreev A, Bandosz TJ. Adsorption/Oxidation of CH3SH on activated carbons containing nitrogen. Langmuir. 2003;19:6115–21.
  • Soscún H, Castellano O, Hernández J. Adsorption of CH3SH in acidic zeolites:  a theoretical study. J Phys Chem B. 2004;108:5620–6.
  • Bo G, Chang L, Xie K. Study of the behavior of adsorbing CS2 by activated carbon. Fuel Process Technol. 2006;87:873–81.
  • Sattler ML, Rosenberk RS. Removal of carbonyl sulfide using activated carbon adsorption. J Air Waste Manage Assoc. 2006;56:219–24.
  • Yang J, Juan P, Shen Z, et al. Removal of carbon disulfide (CS2) from water via adsorption on active carbon fiber (ACF). Carbon N Y. 2006;44:1367–75.
  • Ryzhikov A, Hulea V, Tichit D, et al. Methyl mercaptan and carbonyl sulfide traces removal through adsorption and catalysis on zeolites and layered double hydroxides. Appl Catal, A. 2011;397:218–24.
  • Ghenaatian HR, Baei MT, Hashemian S. Zn12O12 nano-cage as a promising adsorbent for CS2 capture. Superlattices Microstruct. 2013;58:198–204.
  • Wang L, Wang X, Ning P, et al. Selective adsorption of CH 3 SH on cobalt-modified activated carbon with low oxygen concentration. J Taiwan Inst Chem Eng. 2017;75:156–63.
  • Chen X, Shen B-X, Sun H, et al. Adsorption and its mechanism of CS2 on ion-exchanged zeolites Y. Ind Eng Chem Res. 2017;56:6499–507.
  • Wynnyk KG, Hojjati B, Pirzadeh P, et al. High-pressure sour gas adsorption on zeolite 4A. Adsorption. 2017;23:149–62.
  • Cao Z, Wei G, Zhang H, et al. Adsorption property of CS2 and COF2 on nitrogen-doped anatase TiO2(101) surfaces: a DFT study. ACS Omega. 2020;5:21662–8.
  • Zhou L, Zhu H, Zeng W. Density functional theory study on the adsorption mechanism of sulphide gas molecules on α-Fe2O3(001) surface. Inorganics. 2021;9(80.
  • Zhang C, Derakhshandeh M. CS2 adsorption on pristine and Al-doped graphynes: a DFT study. Comput Theor Chem. 2021;1204:113380.
  • Cao Z, Wu X, Wei G, et al. First-principles calculations for adsorption of HF, COF2, and CS2 on Pt-doped single-walled carbon nanotubes. ACS Omega. 2021;6:23776–81.
  • Bai Y, Wei G, Cao Z, et al. Adsorption properties of CS2 and COF2 on the SF6 adsorbent surfaces: a DFT study. Appl Surf Sci. 2022;577:151933.
  • Roohi H, Ardehjani NA. Adsorption behaviour of NO, NO2, CO and CS2 molecules on the surface of carbon-doped gallium nitride nanosheet: a DFT study. Surf Sci. 2022;717:121988.
  • Ding S, Gu W. Evaluate the potential utilization of B24N24 fullerene in the recognition of COS, H2S, SO2, and CS2 gases (environmental pollution). J Mol Liq. 2022;345:117041.
  • Wang W, Fan L, Wang G. Carbon disulfide (CS 2 ) adsorption and dissociation on the Cu(100) surface: a quantum chemical study. Appl Surf Sci. 2017;414:92–100.
  • Rufael TS, Koestner RJ, Kollin EB, et al. Adsorption and thermal decomposition of CH3SH on the Pt(111) surface. Surf Sci. 1993;297:272–85.
  • Hao M, Zeng W, Li Y. Adsorption mechanism of H2S and CH3SH on Fe(110) surface: a density functional theory study. Physica E. 2022;135:114938.
  • Medeiros PV, Gueorguiev G, Stafström S. Bonding, charge rearrangement and interface dipoles of benzene, graphene, and PAH molecules on Au(1 1 1) and Cu(1 1 1). Carbon N Y. 2015;81:620–8.
  • Santos RB D, Rivelino R, de Brito Mota F, et al. Feasibility of novel (H 3 C) n X (SiH 3) 3− n compounds (X= B, Al, Ga, In): structure, stability, reactivity, and Raman characterization from ab initio calculations. Dalton Trans. 2015;44:3356–66.
  • Langhoff SR, Bauschlicher Jr CW. Ab initio studies of transition metal systems. Annu Rev Phys Chem. 1988;39:181–212.
  • Pokluda J, Černý M, Šob M, et al. Ab initio calculations of mechanical properties: methods and applications. Prog Mater Sci. 2015;73:127–58.
  • Froudakis GE. Hydrogen interaction with carbon nanotubes: a review of ab initio studies. J Phys Condens Matt. 2002;14:R453.
  • Groß A, Sakong S. Ab initio simulations of water/metal interfaces. Chem Rev. 2022;122:10746–76.
  • Vessally E, Farajzadeh P, Najafi E. Possible sensing ability of boron nitride nanosheet and its Al–and Si–doped derivatives for methimazole drug by computational study. Iran J Chem Chem Eng. 2021;40.
  • Vessally E, Musavi M, Poor Heravi MR, et al. The interaction between ethionamide and pristine, Si-, Ga-, and Al-doped boron nitride nanoflakes: A computational study. J Sulphur Chem. 2022;43:78–94.
  • Vessally E, Musavi M, Poor Heravi MR. A density functional theory study of adsorption ethionamide on the surface of the pristine. Si and Ga and Al-doped graphene. Iran. J. Chem. Chem. Eng. 2021;40:1720–36.
  • Vessally E, Moladoust R, Mousavi-Khoshdel S, et al. The ClCN adsorption on the pristine and Al-doped boron nitride nanosheet, nanocage, and nanocone: density functional studies. Thin Solid Films. 2018;645:363–9.
  • Nejati K, Hosseinian A, Vessally E, et al. A comparative DFT study on the interaction of cathinone drug with BN nanotubes, nanocages, and nanosheets. Appl Surf Sci. 2017;422:763–8.
  • Jouypazadeh H, Farrokhpour H, Momeni MM. A DFT Study of the water-splitting photocatalytic properties of pristine, Nb-doped, and V-doped Ta3N5 monolayer nanosheets. Surf Inter. 2021;26:101379.
  • Jouypazadeh H, Farrokhpour H, Momeni MM. Theoretical investigation of the water splitting photocatalytic properties of pristine, Nb and V doped, and Nb-V co-doped (111) TaON nanosheets. Appl Surf Sci. 2021;541:148572.
  • Jouypazadeh H, Farrokhpour H, Karbasizadeh M, et al. Water-vapochromic behavior of a mononuclear Pd(II) complex of piroxicam: A DFT and TD-DFT study. J Mol Graph Model. 2021;102:107773.
  • Dong G, Zhang Y, Pan Q, et al. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J Photochem Photobiol C: Photochem Rev. 2014;20:33–50.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132:154104.
  • Ehrlich S, Moellmann J, Reckien W, et al. System-Dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces. ChemPhysChem. 2011;12:3414–20.
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–92.
  • Lu T, Chen F. Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model. 2012;38:314–23.
  • Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Mol Phys. 1970;19:553–66.
  • Glendening ED, Landis CR, Weinhold F. Natural bond orbital methods. Wiley Interdiscip Rev Comput Mol Sci. 2012;2:1–42.
  • Bader RF. Atoms in molecules. Ac Chem Res. 1985;18:9–15.
  • Author. Gaussian 09, Revision D.01. Wallingford CT: Gaussian, Inc.; 2013.
  • Chakraborty B, Mane P, Vaidyanathan A. Hydrogen storage in scandium decorated triazine based g-C3N4: insights from DFT simulations. Int J Hydrogen Energy. 2022.
  • Wen J, Xie J, Chen X, et al. A review on g-C 3 N 4 -based photocatalysts. Appl Surf Sci. 2017;391:72–123.
  • Weinhold F, Landis C, Glendening E. What is NBO analysis and how is it useful? Int Rev Phys Chem. 2016;35:399–440.
  • Contreras-García J, Boto RA, Izquierdo-Ruiz F, et al. A benchmark for the non-covalent interaction (NCI) index or … is it really all in the geometry? Theor Chem Acc. 2016;135:1–14.
  • Benramache S, Belahssen O, Guettaf A, et al. Correlation between electrical conductivity—optical band gap energy and precursor molarities ultrasonic spray deposition of ZnO thin films. J Semicond. 2013;34:113001.
  • Kulcinski G. Thermionic energy conversion. University of Wisconsin-Madison; 2000.
  • Bonnet J, Soonckindt L, Lassabatere L. The kelvin probe method for work function topographies: technical problems and solutions. Vacuum. 1984;34:693–8.
  • Grilj M. Thermionic emission. Publisher; 2008.
  • Solimannejad M, Noormohammadbeigi M. Boron nitride nanotube (BNNT) as a sensor of hydroperoxyl radical (HO2): A DFT study. J Iran Chem Soc. 2017;14:471–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.