117
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Thiourea-based low molecular-mass organogelators from (+)-dehydroabietylamine

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 633-645 | Received 06 Apr 2023, Accepted 13 Jun 2023, Published online: 22 Jun 2023

References

  • Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev. 1997;97(8):3133–3160. doi:10.1021/cr9700282
  • Adams DJ. Personal perspective on understanding low molecular weight gels. Journal of American Chem Soc. 2022;144(25):11047–11053. doi:10.1021/jacs.2c02096
  • Draper ER, Adams DJ. Low-molecular-weight gels: The state of the art. Chem. 2017;3:390–410. doi:10.1016/j.chempr.2017.07.012
  • Hanabusa K, Suzuki M. Development of low-molecular-weight gelators and polymer-based gelators. Polym J. 2014;46:776–782. doi:10.1038/pj.2014.64
  • Draper ER, Adams DJ. Controlling the assembly and properties of low-molecular-weight hydrogelators. Langmuir. 2019;35:6506–6521. doi:10.1021/acs.langmuir.9b00716
  • Okesola BO, Smith DK. Applying low-molecular weight supramolecular gelators in an environmental setting – self-assembled gels as smart materials for pollutant removal. Chem Soc Rev. 2016;45:4226–4251. doi:10.1039/C6CS00124F
  • Delbianco M, Bharate P, Varela-Aramburu S. Carbohydrates in supramolecular chemistry. Chem. Rev. 2016;116:1693–1752. doi:10.1021/acs.chemrev.5b00516
  • Edelsztein VC, Cormack ASM, Ciarlantini M, et al. Self-assembly of 2,3-dihydroxycholestane steroid into supramolecular organogels as a soft template for the in-situ generation of silicate nanomaterials. Beilstein J Org Chem. 2013;9:1826–1836. doi:10.3762/bjoc.9.213
  • Das AK, Manna S, Drew MGB, et al. Low molecular weight organogelators from self-assembling synthetic tripeptides with coded amino acids: morphological, structural, thermodynamic and spectroscopic investigations. Supramol Chem. 2007;18:645–655. doi:10.1080/10610270601035553
  • Sagiri SS, Singh VK, Pal K, et al. Stearic acid based oleogels: A study on the molecular, thermal and mechanical properties. Mater Sci Eng: C. 2015;48:688–699. doi:10.1016/j.msec.2014.12.018
  • Lim PFC, Liu XY, Kang L, et al. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. Int J Pharm. 2006;311:157–164. doi:10.1016/j.ijpharm.2005.12.042
  • Bag BG, Maity GC, Pramanik SR. A terpenoid-based gelator: The first arjunolic acid-derived organogelator for alcohols and mixed solvents. Supramol Chem. 2005;17:383–385. doi:10.1080/10610270500114640
  • Aslam A, Hashmi IA, Ahmed VU, et al. Synthesis of supramolecular organogels derived from urea and bisurea derivatives of dehydroabietylamine. Synth Commun. 2013;43:2824–2831. doi:10.1080/00397911.2012.745157
  • Skilling KJ, Citossi F, Bradshaw TD, et al. Insights into low molecular mass organic gelators: a focus on drug delivery and tissue engineering applications. Soft Matter. 2014;10:237–256. doi:10.1039/C3SM52244J
  • Esposito CL, Tardif V, Sarrazin M, et al. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents. Mater Sci Eng: C. 2020;114:110999, doi:10.1016/j.msec.2020.110999
  • Duan P, Yanai N, Nagatomi H, et al. Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor–acceptor arrays in nanofibers and acquired air stability. J. Am. Chem. Soc. 2015;137(5):1887–1894. doi:10.1021/ja511061h
  • Kartha KK, Babu SS, Sirinivasan S, et al. Attogram sensing of trinitrotoluene with a self-assembled molecular gelator. J. Am. Chem. Soc. 2012;134(10):4834–4841. doi:10.1021/ja210728c
  • Sakthivel A, Reid DL, Goldstein I, et al. Hydrophobic high surface area zeolites derived from Fly Ash for oil spill remediation. Environ Sci Technol. 2013;47:5843–5850. doi:10.1021/es3048174
  • Atlas RM. Bioremediation of petroleum pollutants. Int. J. Biodeter Biodegrad. 1995;35:317–327. doi:10.1016/0964-8305(95)00030-9
  • Atlas RM. Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull. 1995;31:178–182. doi:10.1016/0025-326X(95)00113-2
  • Vibhute AM, Muvvala V, Sureshan KM. A sugar-based gelator for marine oil-spill recovery. Angewandte Chemie (Int. Ed). 2016;55:7782–7785. doi:10.1002/anie.201510308
  • Doshi B, Sillanaa M, Kalliola S. A review of bio-based materials for oil spill treatment. Water Res. 2018;135:262–277. doi:10.1016/j.watres.2018.02.034
  • Cui Y, Li MC, Wu Q, et al. Synthesis-free phase-selective gelator for oil-spill remediation. ACS Appl Mater Interfaces. 2017;39:33549–33553. doi:10.1021/acsami.7b10009
  • Schroeder DC. Thioureas. Chem Rev. 1955;55:181–228. doi:10.1021/cr50001a005
  • Ha S, Lee J, Kim K-S, et al. Anion-responsive thiourea-based gel actuators. Chem Mater. 2019;31:5735–5741. doi:10.1021/acs.chemmater.9b01715
  • Wong R, Dolman SJ. Isothiocyanates from tosyl chloride mediated decomposition of in situ generated dithiocarbamic acid salts. J Org Chem. 2007;72:3969–3971. doi:10.1021/jo070246n
  • Foreiter MB, Gunaratne NHQ, Nockemann P, et al. Chiral thiouronium salts: synthesis, characterization and application in NMR enantio-discrimination of chiral oxoanion. New J. Chem. 2013;37:515–533. doi:10.1039/C2NJ40632B
  • Yu Y, Wang S, Jia L, et al. Organogels from different self-assembling novel L-proline dihydrazide derivatives: gelation mechanism and morphology investigations. J. Sol. Gel Sci. Tech. 2016;78:218–227. doi:10.1007/s10971-015-3903-1
  • Gosavi RK, Agarwala U, Rao CNR. Infrared spectra and configurations of alkylthiourea derivatives. Normal vibrations of N,N’-dimethyland tetramethylthiourea. J. American Chem Soc. 1967;89:235–239. doi:10.1021/ja00978a009
  • Pei Q, et al. In situ synthesis of reduction-responsive organogelators via oxidative coupling of tritylthio-terminated gallic acid derivatives. Colloids Surf, A. 2022;641:128602. doi:10.1016/j.colsurfa.2022.128602
  • Pei Q, Han Q, Tang F, et al. Gallic acid modified naphthalimide containing disulfide bond as reduction responsive supramolecular organogelator. ChemistrySelect. 2022;6(17):e202201296.
  • Laaksonen T, Heikkinen S, Wähälä K. Synthesis of tertiary and quaternary amine derivatives from wood resin as chiral NMR solvating agents. Molecules. 2015;20:20873–20886. doi:10.3390/molecules201119732

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.