111
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent developments in the greener approaches for the dithioacetalization of carbonyl compounds

Pages 779-813 | Received 24 Apr 2023, Accepted 15 Jul 2023, Published online: 25 Jul 2023

References

  • Wuts PGM. Greene’s protective groups in organic synthesis. 5th Ed. New Jersey (NJ): John Wiley & Sons, Inc; 2014. doi:10.1002/9781118905074
  • Schelhaas M, Waldmann H. Protecting group strategies in organic synthesis. Angew Chem Int Ed Engl. 1996;35(18):2056–2083. doi:10.1002/anie.199620561
  • Yus M, Nájera C, Foubelo F. The role of 1,3-Dithianes in natural product synthesis. Tetrahedron. 2003;59(33):6147–6212. doi:10.1016/s0040-4020(03)00955-4
  • Smith AB, Adams CM. Evolution of dithiane-based strategies for the construction of architecturally complex natural products. Acc Chem Res. 2004;37(6):365–377. doi:10.1021/ar030245r
  • Wood WW. Chapter 4 trends in the chemistry of 1,3- Dithioacetals. Organosulfur Chemistry. 1995: 133–224. doi:10.1016/s1099-8268(07)80015-1
  • Ram VJ, Goel A, Kandpal M, et al. Tetraazaacenaphthene, tetraazaphenalene and 1,3,4-thiadiazole derivatives as potential leishmanicides. Bioorg Med Chem Lett. 1997;7(6):651–656. doi:10.1016/s0960-894x(97)00086-3
  • Sun Z, Wei C, Wu S, et al. Synthesis, anti-potato virus Y activities, and interaction mechanisms of novel quinoxaline derivatives bearing dithioacetal moiety. J Agric Food Chem. 2022;70(23):7029–7038. doi:10.1021/acs.jafc.2c01898
  • Zhang J, Song R, Wu S, et al. Discovery of pyrido[1,2-a] pyrimidinone mesoionic compounds incorporating a dithioacetal moiety as novel potential insecticidal agents. J Agric Food Chem. 2021;69(50):15136–15144. doi:10.1021/acs.jafc.1c05823
  • Althoff F, Benzing K, Comba P, et al. Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nat Commun. 2014;5(1). doi:10.1038/ncomms5205
  • Mehrabani M, Safa K, Rahimi M, et al. Thiazolidine-2-thione and 2-imino-1,3-dithiolane derivatives: synthesis and evaluation of antimicrobial activity. Pharm Chem J. 2020;54(6):588–595. doi:10.1007/s11094-020-02244-5
  • Chittiboyina AG, Venkatraman MS, Mizuno CS, et al. Design and synthesis of the first generation of dithiolane thiazolidinedione- and phenylacetic acid-based PPARΓ agonists. J. Med. Chem. 2006;49(14):4072–4084. doi:10.1021/jm0510880
  • Guillonneau C, Charton Y, Ginot YM, et al. Synthesis and pharmacological evaluation of new 1,2-dithiolane based antioxidants. Eur J Med Chem. 2003;38(1):1–11. doi:10.1016/s0223-5234(02)01424-1
  • Seebach D. Methods of reactivity umpolung. Angew Chem Int Ed Engl. 1979;18(4):239–258. doi:10.1002/anie.197902393
  • Luh TY. Recent advances on the synthetic applications of the dithioacetal functionality. J Organomet Chem. 2002;653(1–2):209–214. doi:10.1016/s0022-328x(02)01151-8
  • Corey EJ, Seebach D. Carbanions of 1,3-dithianes. reagents for C-C bond formation by nucleophilic displacement and carbonyl addition. Angew Chem Int Ed Engl. 1965;4(12):1075–1077. doi:10.1002/anie.196510752
  • Corey EJ, Seebach D. Synthesis of 1, n-dicarbonyl derivates using carbanions from 1,3-dithianes. Angew Chem Int Ed Engl. 1965;4(12):1077–1078. doi:10.1002/anie.196510771
  • Chiba K, Uchiyama R, Kim S, et al. Benzylic intermolecular carbon−carbon bond formation by selective anodic oxidation of dithioacetals. Org Lett. 2001;3(8):1245–1248. doi:10.1021/ol015734a
  • Kang J, Liang F, Sun SG, et al. Copper-mediated C−N bond formation via direct aminolysis of dithioacetals. Org Lett. 2006;8(12):2547–2550. doi:10.1021/ol060763c
  • Sasson R, Hagooly A, Rozen S. Novel method for incorporating the CHf2 group into organic molecules using Brf3. Org Lett. 2003;5(5):769–771. doi:10.1021/ol034051n
  • Vale JR, Rimpiläinen T, Sievänen E, et al. Pot-economy autooxidative condensation of 2-aryl-2-lithio-1,3-dithianes. J Org Chem. 2018;83(4):1948–1958. doi:10.1021/acs.joc.7b02896
  • Mozingo R, Wolf DE, Harris SA, et al. Hydrogenolysis of sulfur compounds by Raney nickel catalyst. J Am Chem Soc. 1943;65(6):1013–1016. doi:10.1021/ja01246a005
  • Saito M, Tsuji N, Kobayashi Y, et al. Direct dehydroxylative coupling reaction of alcohols with organosilanes through Si–X bond activation by halogen bonding. Org Lett. 2015;17(12):3000–3003. doi:10.1021/acs.orglett.5b01290
  • Singh K, Singh P, Singh P, et al. Cross-dehydrogenative coupling of dithiolanes with ketones and indoles under metal-free conditions. Synlett. 2013;24(15):1963–1967. doi:10.1055/s-0033-1339335
  • Liu L, Wang G, Jiao J, et al. Sulfur-directed ligand-free C–H borylation by iridium catalysis. Org Lett. 2017;19(22):6132–6135. doi:10.1021/acs.orglett.7b03008
  • Lou J, Wang Q, Wu P, et al. Transition-metal mediated carbon–sulfur bond activation and transformations: An update. Chem Soc Rev. 2020;49(13):4307–4359. doi:10.1039/c9cs00837c
  • Wong KT, Luh TY. A chelation approach toward activation of Csp3-S bonds. nickel-catalyzed selective cross-coupling of bisdithioacetals with grignard reagents. J Am Chem Soc. 1992;114(18):7308–7310. doi:10.1021/ja00044a060
  • Gaunt MJ, Sneddon HF, Hewitt PR, et al. Development of ß-keto 1,3-dithianes as versatile intermediates for organic synthesis. Org Biomol Chem. 2003;1(1):15–16. doi: 10.1039/b208982c
  • Chang J, Liu B, Yang Y, et al. Pd-catalyzed C–S activation/isocyanide insertion/hydrogenation enables a selective aerobic oxidation/cyclization. Org Lett. 2016;18(16):3984–3987. doi:10.1021/acs.orglett.6b01780
  • Lu J, Wang H, Tian Z, et al. Cryopolymerization of 1,2-dithiolanes for the facile and reversible grafting-from synthesis of protein–polydisulfide conjugates. J Am Chem Soc. 2020;142(3):1217–1221. doi:10.1021/jacs.9b12937
  • Sartori G, Ballini R, Bigi F, et al. Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chem Rev. 2003;104(1):199–250. doi:10.1021/cr0200769
  • Sartori G, Maggi R. Update 1 of: protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chem Rev. 2010;110(3). doi:10.1021/cr900316t
  • Sheldon RA. The greening of solvents: towards sustainable organic synthesis. Curr Opin Green Sustain Chem. 2019;18:13–19. doi:10.1016/j.cogsc.2018.11.006
  • Banerjee AK, Laya MS, Vera WJ. Silica gel in organic synthesis. Russ Chem Rev. 2001;70(11):971–990. doi:10.1070/rc2001v070n11abeh000642
  • Hajipour AR, Zarei A, Khazdooz L, et al. Silica sulfuric acid as a mild and chemoselective catalyst for dithioacetalization under solvent-free conditions. J Sulfur Chem. 2004;25(6):389–393. doi:10.1080/17415990412331320645
  • Rudrawar S, Besra RC, Chakraborti AK. Perchloric acid adsorbed on silica gel (HClO4-SiO2) as an extremely efficient and reusable catalyst for 1,3-dithiolane/dithiane formation. Synthesis (Mass). 2006;2006(16):2767–2771. doi:10.1055/s-2006-942474
  • Hajipour AR, Zarei A, Khazdooz L, et al. A mild and chemoselective catalyst for thioacetalization under solvent free conditions. Phosphorus, Sulfur, and Silicon and the Relat Elem. 2006;181(2):387–395. doi:10.1080/104265091000877
  • Jin TS, Sun X, Ma YR, et al. A rapid and efficient method of thioacetalization of carbonyl compounds catalysed by POCl3-montmorillnite. Synth Commun. 2001;31(11):1669–1673. doi:10.1081/scc-100103985
  • Miranda R, Osnaya R, Garduñ R, et al. A general alternative to obtain S.S-acetals using taff, a bentonitic clay, as the catalyst. Synth Commun. 2001;31(10):1587–1597. doi:10.1081/scc-100104073
  • Deka N, Sarma JC. Highly efficient dithioacetalization of carbonyl compounds catalyzed with iodine supported on neutral alumina. Chem Lett. 2001;30(8):794–795. doi:10.1246/cl.2001.794
  • Hajipour AR, Pourmousavi SA, Ruoho A. Chemoselective and solvent-free thioacetalization of aldehydes by a catalytic amount of NBS. Synth Commun. 2006;36(19):2807–2811. doi:10.1080/00397910600767538
  • Firouzabadi H, Iranpoor N, Kohmareh G. Highly efficient and chemoselective thioacetalization of carbonyl compounds catalyzed with aluminum trifluromethanesulfonate [Al(OTf)3]. Synth Commun. 2003;33(1):167–173. doi:10.1081/scc-120015573
  • Bandgar BP, Kamble VT, Kulkarni A. Iron (III) fluoride: A highly efficient and versatile catalyst for the protection of carbonyl compounds under solvent-free conditions. Aust J Chem. 2005;58(8):607–610. doi:10.1071/ch05067
  • Kumar A, Rao MS, Rao VK. Cerium triflate: An efficient and recyclable catalyst for chemoselective thioacetalization of carbonyl compounds under solvent-free conditions. Aust J Chem. 2010;63(1):135–140. doi:10.1071/ch09296
  • Hajipour AR, Pourmousavi SA, Ruoho AE. Efficient method for thioacetalization of carbonyl compounds in the presence of a catalytic amount of benzyltriphenylphosphonium tribromide (BTPTB) under solvent-free conditions. Synth Commun. 2008;38(15):2548–2566. doi:10.1080/00397910802219197
  • Pourmousavi SA, Hadavandkhani M. Preparation of 1-benzyl-4-aza-1-azoniabicyclo [2.2. 2] octane tribromide and its application as a mild and chemoselective catalyst for thioacetalization of carbonyl compounds. J Sulfur Chem. 2009;30(1):37–45. doi:10.1080/17415990802449244
  • Shaterian HR, Hosseinian A, Ghashang M. Chemoselective dithioacetalization and oxathioacetalization of carbonyl compounds using alumina sulfuric acid as catalyst. Synth Commun. 2008;38(23):4097–4106. doi:10.1080/00397910802272022
  • Zahouily M, Mezdar A, Rakik J, et al. A mild and efficient method for the protection of carbonyl compounds as dithioacetals, dithiolanes and dithianes catalysed by iodine supported on natural phosphate. J Mol Cat A Chem. 2005;233(1–2):43–47. doi:10.1016/j.molcata.2005.01.043
  • Zahouily M, Mezdar A, Elmakssoudi A, et al. Comparison of different lewis acids supported on natural phosphate as new catalysts for chemoselective dithioacetalization of carbonyl compounds under solvent-free conditions. Arkivoc. 2005;2006(2):31–40. doi:10.3998/ark.5550190.0007.203
  • Manabe K, Iimura S, Sun XM, et al. Dehydration reactions in water. brønsted acid−surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J Am Chem Soc. 2002;124(40):11971–11978. doi:10.1021/ja026241j
  • Liu Q, Che G, Yu H, et al. The first nonthiolic, odorless 1,3-propanedithiol equivalent and its application in thioacetalization. J Org Chem. 2003;68(23):9148–9150. doi:10.1021/jo034702t
  • Dong D, Ouyang Y, Yu H, et al. Chemoselective thioacetalization in water: 3-(1, 3-dithian-2-ylidene) pentane-2, 4-dione as an odorless, efficient, and practical thioacetalization reagent. J Org Chem. 2005;70(11):4535–4537. doi:10.1021/jo050271y
  • Ouyang Y, Dong D, Liang Y, et al. Acid-promoted thioacetalization in water using 2-(1, 3-dithian-2-ylidene) malonic acid as an odorless and efficient thioacetalization reagent. Synth Commun. 2007;37(6):993–1000. doi:10.1080/00397910601163984
  • Yadav JS, Reddy BV, Kondaji G. Eco-friendly and highly chemoselective 1, 3-oxathio-and 1, 3-dithioacetalization of aldehydes using ionic liquids. Chem Lett. 2003;32(8):672–673. doi:10.1246/cl.2003.672
  • Kamal A, Chouhan G. Chemoselective thioacetalization and transthioacetalization of carbonyl compounds catalyzed by immobilized scandium (III) triflate in ionic liquids. Tetrahedron Lett. 2003;44(16):3337–3340. doi:10.1016/s0040-4039(03)00580-x
  • Kamal A, Chouhan G. Investigations towards the chemoselective thioacetaliztion of carbonyl compounds by using ionic liquid [bmim] Br as a recyclable catalytic medium. Adv Synth Catal. 2004;346(5):579–582. doi:10.1002/adsc.200303171
  • Gupta N S, Kad GL, et al. Acidic ionic liquid [bmim] HSO4: An efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection. Catal Commun. 2007;8(9):1323–1328. doi:10.1016/j.catcom.2006.11.030
  • Lenardão EJ, Borges EL, Mendes SR, et al. Selenonium ionic liquid as an efficient catalyst for the synthesis of thioacetals under solvent-free conditions. Tetrahedron Lett. 2008;49(12):1919–1921. doi:10.1016/j.tetlet.2008.01.096
  • Hajipour AR, Hosseini P, Ruoho AE. Application of Bu4N+HSO4− as an ionic liquid and acid catalyst for thioacetalization of aldehydes and ketones. Phosphorus, Sulfur, and Silicon and the Relat Elem. 2008;183(10):2502–2508. doi:10.1080/10426500801967757
  • Hajipour A, Azizi G, Ruoho A. An efficient method for chemoselective thioacetalization of aldehydes in the presence of a catalytic amount of acidic ionic liquid under solvent-free conditions. Syn Lett. 2009;2009(12):1974–1978. doi:10.1055/s-0029-1217550
  • Kumar A, Kumar S, Saxena A, et al. Selective protection of carbonyl compounds over nano-sized nickel catalysts. Catal Lett. 2007;122(1–2):98–105. doi:10.1007/s10562-007-9349-5
  • Laskar DD, Prajapati D, Sandhu JS. Chemoselective dithioacetalisation of carbonyl compounds under solvent-free conditions. J Chem Res. 2001;2001(8):313–315. doi:10.3184/030823401103170070
  • Bez G, Gogoi D. A rapid and efficient method for 1,3-dithiolane synthesis. Tetrahedron Lett. 2006;47(29):5155–5157. doi:10.1016/j.tetlet.2006.05.057
  • Ballesteros L, Noguez O, Arroyo G, et al. Eco-friendly conditions for the production of 1, 3-dithianes using microwave irradiation. J Mex Chem Soc. 2005;49(3):302–306. ISSN 1870-249X.
  • Zarei A, Hajipour AR, Khazdooz L, et al. Fast, efficient and chemoselective method for thioacetalization and transthioacetalization using catalytic amount of P2O5/Al2O3 under microwave irradiation. J Mol Cat A Chem. 2009;301(1–2):39–46. doi:10.1016/j.molcata.2008.11.005
  • Anastas P, Warner T, John C. Green chemistry: theory and practice. New York: Oxford University Press; 1998. Chapter 4, Principles of Green Chemistry. ISBN-13-978-0-19850234-0; p. 29–54.
  • Basu B, Paul S. Solid-phase organic synthesis and catalysis: some recent strategies using alumina,: silica, and polyionic resins. J Catal. 2013;2013:1–20. doi:10.1155/2013/614829
  • Bhattacharyya S, Basu B. Solid–supported catalysis. In: Zhang W, Berkeley WC, editor. Green techniques for organic synthesis and medicinal chemistry. Hoboken (NJ): John Wiley & Sons; 2018. p. 269–289.
  • Drewry DH, Coe DM, Poon S. Solid-supported reagents in organic synthesis. Med Res Rev. 1999;19(2):97–148. doi:10.1002/(sici)1098-1128(199903)19:2<97::aid-med2>3.0.co;2-y
  • Gupta P, Paul S. Solid acids: green alternatives for acid catalysis. Catal Today. 2014;236:153–170. doi:10.1016/j.cattod.2014.04.010
  • Pourmousavi SA, Kazemi SS. Highly efficient and chemoselective method for the thioacetalization of aldehydes and transthioacetalization of acetals and acylals catalyzed by H2SO4-silica under solvent-free conditions. Monatsh Chem. 2011;143(6):917–923. doi:10.1007/s00706-011-0664-6
  • Mirjalili BBF, Bamoniri A, Akbari A. Nano-BF3. SiO2: A reusable and eco-friendly catalyst for thioacetalization and trans-thioacetalization reactions. Iran J Catal. 2011;1(2):87–92. https://ijc.shahreza.iau.ir/article_551251.html.
  • Aoyama T, Suzuki T, Nagaoka T, et al. Silica-gel supported sulfamic acid (SA/SiO2) as an efficient and reusable catalyst for conversion of ketones into oxathioacetals and dithioacetals. Synth Commun. 2012;43(4):553–566. doi:10.1080/00397911.2011.604458
  • De SK. Ruthenium (III) chloride-catalyzed thioacetalization of carbonyl compounds: scope,: selectivity, and limitations. Adv Synth Catal. 2005;347(5):673–676. doi:10.1002/adsc.200404323
  • Li J, Xie S, Cheng L, et al. Chemoselective thioacetalisation of aldehydes catalysed by a MCM-41-supported mercapto ruthenium complex. J Chem Res. 2011;35(10):611–614. doi:10.3184/174751911x13179178795646
  • Martínez-Edo G, Balmori A, Pontón I, et al. Functionalized ordered mesoporous silicas (MCM-41): synthesis and applications in catalysis. Catalysts. 2018;8(12):617. doi:10.3390/catal8120617
  • Karimi B, Vafaeezadeh M. SBA-15 functionalized sulfonic acid containing a confined hydrophobic and acidic ionic liquid: A highly efficient catalyst for solvent-free thioacetalization of carbonyl compounds at room temperature. RSC Adv. 2013;3(45):23207. doi:10.1039/c3ra42286k
  • Verma P, Kuwahara Y, Mori K, et al. Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications. Nanoscale. 2020;12(21):11333–11363. doi:10.1039/d0nr00732c
  • Sedrpoushan A, Ghazizadeh H. Mesoporous sBa-15 silica catalyst functionalized with phenylsulfonic acid groups (SbA-15-ph-So3h) as efficient nanocatalyst for chemoselective thioacetalization of carbonyl compounds. J Sulfur Chem. 2017;38(1):112–118. doi:10.1080/17415993.2016.1257929
  • Jung N, Grässle S, Lütjohann DS, et al. Solid-supported odorless reagents for the dithioacetalization of aldehydes and ketones. Org Lett. 2014;16(4):1036–1039. doi:10.1021/ol403313h
  • Lai J, Du W, Tian L, et al. Fe-catalyzed direct dithioacetalization of aldehydes with 2-chloro-1,3-dithiane. Org Lett. 2014;16(17):4396–4399. doi:10.1021/ol502276r
  • Hu P, Dong B, Zhou Z, et al. Chemoselective thioacetalisation and transthioacetalisation of aldehydes catalyzed by PVP-I. ChemistrySelect. 2019;4(36):10798–10804. doi:10.1002/slct.201902635
  • Karami B, Taei M, Khodabakhshi S, et al. Synthesis of 1, 3-dithiane and 1, 3-dithiolane derivatives by tungstate sulfuric acid: recyclable and green catalyst. J Sulfur Chem. 2011;33(1):65–74. doi:10.1080/17415993.2011.629659
  • Veisi H, Ghorbani RV, Dadamahaleh SA. Poly (N-bromobenzene-1, 3-disulfonamide) and N, N, N′, N′-tetrabromobenzene-1, 3-disulfonamide as a mild and efficient catalyst for chemoselective thioacetalization of carbonyl functions and transthioacetalization reactions. J Heterocycl Chem. 2011;48(3):699–705. doi:10.1002/jhet.620
  • Dreyer DR, Jia HP, Bielawski CW. Inside cover: graphene oxide: A convenient carbocatalyst for facilitating oxidation and hydration reactions (Angew. chem. int. Ed. 38/2010). Angew Chem Int Ed Engl. 2010;49(38):6686–6686. doi:10.1002/anie.201003238
  • Dreyer DR, Bielawski CW. Carbocatalysis: heterogeneous carbons finding utility in synthetic chemistry. Chem Sci. 2011;2(7):1233–1240. doi:10.1039/c1sc00035g
  • Navalon S, Dhakshinamoorthy A, Alvaro M, et al. Carbocatalysis by graphene-based materials. Chem Rev. 2014;114(12):6179–6212. doi:10.1021/cr4007347
  • Roy B, Sengupta D, Basu B. Graphene oxide (go)-catalyzed chemoselective thioacetalization of aldehydes under solvent-free conditions. Tetrahedron Lett. 2014;55(48):6596–6600. doi:10.1016/j.tetlet.2014.10.043
  • Papernaya LK, Levanova EP, Sukhomazova EN, et al. Synthesis of open-chain dithioacetals from thiophene-2-carbaldehyde and its analogs. Russ J Org Chem. 2005;41(7):952–955. doi:10.1007/s11178-005-0275-y
  • Papernaya LK, Levanova EP, Klyba LV, et al. 5-(2-thienylsulfanyl)thiophene-2-carbaldehyde: thioacetalization, chloromethylation, and oxidation. Russ J Org Chem. 2009;45(7):1036–1039. doi:10.1134/s1070428009070094
  • McNamara JM, Leazer JL, Bhupathy M, et al. Synthesis of unsymmetrical dithioacetals: an efficient synthesis of a novel LTD4 antagonist, L-660,711. J Org Chem. 1989;54(15):3718–3721. doi:10.1021/jo00276a038
  • Gauthier JY, Zajac N, Mayhew DL, et al. Heteroaromatic dithioacetals part I: The preparation of unsymmetrical dithioacetals from heteroaromatic thiols. Syn Lett. 1998;1998(3):289–291. doi:10.1055/s-1998-1636
  • Gauthier JY, Martins EO, Young RN, et al. Heteroaromatic dithioacetals, part II: evidence of a novel mechanism for the exclusive formation of unsymmetrical dithioacetals. Syn Lett. 2002;2002(06):0984–0986. doi:10.1055/s-2002-31921
  • Bognar S, Gemmeren M. Direct synthesis of unsymmetrical dithioacetals. Chem Eur J. 2021;27(15):4859–4863. doi:10.1002/chem.202004835
  • Fahid F, Pourmousavi SA. Sulfonated polyanthracene-catalyzed highly efficient and chemoselective thioacetalization of carbonyl compounds and transthioacetalization of acetals and acylals. J Sulfur Chem. 2014;36(1):16–29. doi:10.1080/17415993.2014.958751
  • Sheldon RA. Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 2014;16(3):950–963. doi:10.1039/c3gc41935e
  • Meninno S. Valorization of waste: sustainable organocatalysts from renewable resources. ChemSusChem. 2019;13(3):439–468. doi:10.1002/cssc.201902500
  • Xu C, Paone E, Rodríguez-Padrón D, et al. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev. 2020;49(13):4273–4306. doi:10.1039/d0cs00041h
  • Li H, Yang T, Riisager A, et al. Chemoselective synthesis of dithioacetals from bio-aldehydes with zeolites under ambient and solvent-free conditions. ChemCatChem. 2017;9(6):1097–1104. doi:10.1002/cctc.201601687
  • Kadam KR. An expedient carbon–sulfur bond formation explored through the cellulose sulfonic acid (CSA) catalyzed dithioacetal protection of carbonyl compounds. J Sulfur Chem. 2020;41(5):530–541. doi:10.1080/17415993.2020.1775835
  • Ghorbani F, Pourmousavi SA, Kiyani H. Novel carbon-based solid acid from green pistachio peel as an efficient catalyst for the chemoselective acylation, acetalization and thioacetalization of aldehydes,: synthesis of biscoumarins and antimicrobial evaluation. Curr Organocatalysis. 2019;7(1):55–80. doi:10.2174/2213337206666190717164606
  • Liu Q, Wu LZ. Recent advances in visible-light-driven organic reactions. Natl Sci Rev. 2017;4(3):359–380. doi:10.1093/nsr/nwx039
  • Chaiseeda K, Chavasiri W. Thioacetalization of aldehydes and ketones catalyzed by hexabromoacetone. Phosphorus: Sulfur, Silicon Relat Elem. 2017;192(9):1034–1039. doi:10.1080/10426507.2017.1321646
  • Xing Z, Yang M, Sun H, et al. Visible-light promoted dithioacetalization of aldehydes with thiols under aerobic and photocatalyst-free conditions. Green Chem. 2018;20(22):5117–5122. doi:10.1039/c8gc02237b
  • Choudhuri K, Pramanik M, Mal P. λ3-IODANES as visible light photocatalyst in thioacetalization of aldehydes. Eur J Org Chem. 2019;2019(30):4822–4826. doi:10.1002/ejoc.201900753
  • Byrne FP, Jin S, Paggiola G, et al. Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process. 2016;4(1):1–24. doi:10.1186/s40508-016-0051-z
  • Du K, Wang S, Basha RS, et al. Visible-light photoredox-catalyzed thioacetalization of aldehydes under metal-free and solvent-free conditions. Adv Synth Catal. 2018;361(7):1597–1605. doi:10.1002/adsc.201800999
  • Sheldon RA. Green solvents for sustainable organic synthesis: state of the art. Green Chem. 2005;7(5):267–278. doi:10.1039/B418069K
  • Shanab K, Neudorfer C, Spreitzer H. Green solvents in organic synthesis: An overview II. Curr Org Chem. 2016;20(15):1576–1583. doi:10.2174/1385272820666160209212804
  • Zhou F, Hearne Z, Li CJ. Water—the greenest solvent overall. Curr Opin Green Sustain Chem. 2019;18:118–123. doi:10.1016/j.cogsc.2019.05.004
  • Gawande MB, Bonifácio VD, Luque R, et al. Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem Soc Rev. 2013;42(12):5522–5551. doi:10.1039/c3cs60025d
  • Earle MJ, Seddon KR. Ionic liquids. green solvents for the future. Pure Appl Chem. 2000;72(7):1391–1398. doi:10.1351/pac200072071391
  • Vekariya RL. A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq. 2017;227:44–60. doi:10.1016/j.molliq.2016.11.123
  • Rajabi F, Karimi N, Luque R, et al. Highly ordered mesoporous functionalized pyridinium protic ionic liquid framework as a highly efficient catalytic system in chemoselective thioacetalization of carbonyl compounds under solvent-free conditions. Mol Catal. 2021;515:111919. doi:10.1016/j.mcat.2021.111919
  • Weng SS, Chang SC, Chang TH, et al. Chemoselective (trans)thioacetalization of carbonyl compounds with a reusable lewis acid-surfactant-combined copper bis(dodecyl sulfate) catalyst in water. Synthesis (Mass). 2010;2010(09):1493–1499. doi:10.1055/s-0029-1218693
  • Bahrami K, Khodaei MM, Tajik M, et al. Thioacetalization of aldehydes and ketones in SDS micelles. J Sulfur Chem. 2011;32(5):397–403. doi:10.1080/17415993.2011.608165
  • Gu Y, Jérôme F. Glycerol as a sustainable solvent for green chemistry. Green Chem. 2010;12(7):1127–1138. doi:10.1039/c001628d
  • Díaz-Álvarez AE, Francos J, Lastra-Barreira B, et al. Glycerol and derived solvents: New sustainable reaction media for organic synthesis. Chem Commun. 2011;47(22):6208–6227. doi:10.1039/c1cc10620a
  • Perin G, Mello LG, Radatz CS, et al. Green, catalyst-free thioacetalization of carbonyl compounds using glycerol as recyclable solvent. Tetrahedron Lett. 2010;51(33):4354–4356. doi:10.1016/j.tetlet.2010.06.049
  • Wan JP, Jing Y, Liu Y. Ethyl lactate mediated thioacetalization of aldehydes at ambient temperature. Phosphorus: Sulfur, Silicon Relat Elem. 2016;191(10):1302–1305. doi:10.1080/10426507.2016.1209504
  • Baig RB, Varma RS. Alternative energy input: mechanochemical,: microwave and ultrasound-assisted organic synthesis. Chem Soc Rev. 2012;41(4):1559–1584. doi:10.1039/c1cs15204a
  • Leitemberger A, Böhs LM, Peixoto ML, et al. Sulfamic acid-catalyzed thioacetalization of aldehydes under solvent and metal-free conditions. ChemistrySelect. 2020;5(27):8253–8257. doi:10.1002/slct.202001308

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.