192
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Deep eutectic solvents with ultrasonic energy as an environmentally benign and green approach for the synthesis of bisthioglycolic acid derivatives

, , , , & ORCID Icon
Pages 751-761 | Received 13 Apr 2023, Accepted 26 Jul 2023, Published online: 07 Aug 2023

References

  • Xu X, Liu R, Cui Y, et al. PANI/FeUiO-66 nanohybrids with enhanced visible-light promoted photocatalytic activity for the selectively aerobic oxidation of aromatic alcohols. Appl Catal, B. 2017 2017/08/05/;210:484–494. doi:10.1016/j.apcatb.2017.04.021
  • Kumar G, Bhargava G, Kumar Y, et al. Eosin Y photocatalyzed access to Biginelli reaction using primary alcohols via domino multicomponent cascade: an approach towards sustainable synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones. J Chem Sci. 2022;134(2):1–11. doi:10.1007/s12039-022-02039-z
  • Ali A, Ali A, Bakht MA, et al. Ultrasound promoted synthesis of N-(substituted phenyl)−2-(7–hydroxy-4-methyl-2H-chromen-2-ylidene) hydrazine-1-carboxamides as cytotoxic and antioxidant agents. J Mol Struct. 2021;1238:130452. doi:10.1016/j.molstruc.2021.130452
  • Chavan P, Pansare D, Shelke R, et al. Ultrasound-assisted synthesis and biological significance of substituted 4H-chromene-3-carbonitrile using greenery approaches. Curr Chem Lett. 2021;10(1):43–52. doi:10.5267/j.ccl.2020.7.003
  • Gomha SM, Khalil KD. A convenient ultrasound-promoted synthesis of some new thiazole derivatives bearing a coumarin nucleus and their cytotoxic activity. Molecules. 2012;17(8):9335–9347. doi:10.3390/molecules17089335
  • Komar M, Prašnikar F, Tatjana G, et al. 3-Amino-2-methylquinazolin-4-(3H)-one schiff bases synthesis-A green chemistry approach-A comparison of microwave and ultrasound promoted synthesis with mechanosynthesis. Curr Green Chem. 2021;8(1):62–69. doi:10.2174/2213346107999201231125434
  • Kowsari E, Mallakmohammadi M. Ultrasound promoted synthesis of quinolines using basic ionic liquids in aqueous media as a green procedure. Ultrason Sonochem. 2011;18(1):447–454. doi:10.1016/j.ultsonch.2010.07.020
  • Puri S, Parmar A, Chopra HK. Ultrasound assisted reactions. handbook of greener synthesis of nanomaterials and compounds. Elsevier; 2021. p. 177–246.
  • Saleh TS, El-Rahman A, Elkateb NM, et al. Ultrasound promoted synthesis of some novel fused pyrans. Ultrason Sonochem. 2012;19(3):491–497. doi:10.1016/j.ultsonch.2011.10.008
  • Sharafian S, Hossaini Z, Rostami-Charati F, et al. Ultrasound-promoted green synthesis of pyrido [2, 1-a] isoquinoline derivatives and studies on their antioxidant activity. Comb Chem High Throughput Screen 2021;24(1):119–128. doi:10.2174/1386207323666200606212501
  • Singh R. A BRIEF REVIEW ON RECENT DEVELOPMENTS IN ULTRASOUND ASSISTED SYNTHESIS OF HETEROCYCLES. Indian J Sci Res. 2021;11(2):77–84.
  • Zang H, Wang M, Cheng B-W, et al. Ultrasound-promoted synthesis of oximes catalyzed by a basic ionic liquid [bmIm] OH. Ultrason Sonochem. 2009;16(3):301–303. doi:10.1016/j.ultsonch.2008.09.003
  • Mohammadi Ziarani G, Kheilkordi Z, Gholamzadeh P. Ultrasound-assisted synthesis of heterocyclic compounds. Mol Diversity. 2020;24:771–820. doi:10.1007/s11030-019-09964-1
  • Handore KN, Chabukswar VV, Pawar D, et al. Ultrasound-assisted solvent-free synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones/thiones using polyindole as a recyclable catalyst. Polym (Guildf)-Plast Technol Mat. 2021;60(3):306–315. doi:10.1080/25740881.2020.1811313
  • Hassen MB, Masmoudi F, Zribi L, et al. Regioselective synthesis of novel [1, 2, 4] triazolo [1, 5-a] pyridine derivatives. Chem Sel. 2021;6(5):945–950. doi:10.1002/slct.202004577
  • Heravi MRP. An efficient synthesis of quinolines derivatives promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation via the tandem addition/annulation reaction of o-aminoaryl ketones with α-methylene ketones. Ultrason Sonochem. 2009;16(3):361–366. doi:10.1016/j.ultsonch.2008.11.001
  • Wang S-X, Li Z-Y, Zhang J-C, et al. The solvent-free synthesis of 1, 4-dihydropyridines under ultrasound irradiation without catalyst. Ultrason Sonochem. 2008;15(5):677–680. doi:10.1016/j.ultsonch.2008.02.009
  • Yavari I, Sheikhi S, Sheykhahmadi J, et al. Ultrasound-promoted synthesis of spirocyclopropanes from switchable starting materials via azomethine ylide [3 + 2]-cycloaddition. Synthesis. 2021. doi:10.1055/a-1370-1884
  • Zang H, Su Q, Mo Y, et al. Ionic liquid [EMIM] OAc under ultrasonic irradiation towards the first synthesis of trisubstituted imidazoles. Ultrason Sonochem. 2010;17(5):749–751. doi:10.1016/j.ultsonch.2010.01.015
  • Corbet J-P, Mignani G. Selected patented cross-coupling reaction technologies. Chem Rev. 2006;106(7):2651–2710. doi:10.1021/cr0505268
  • Sethiya A, Teli P, Manhas A, et al. Carbon-SO3H: an efficient catalyst for the synthesis of biscoumarin under ambient reaction conditions and their in silico studies. Synth Commun. 2020;50(16):2440–2460. doi:10.1080/00397911.2020.1780613
  • Xie P, Wang J, Liu Y, et al. Water-promoted CS bond formation reactions. Nat Commun. 2018;9(1):1–8. doi:10.1038/s41467-017-02088-w
  • Dickens MJ, Gilday JP, Mowlem TJ, et al. Transition metal mediated thiation of aromatic rings. Tetrahedron. 1991;47(40):8621–8634. doi:10.1016/S0040-4020(01)82405-4
  • Feng M, Tang B, H Liang S, et al. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr Top Med Chem. 2016;16(11):1200–1216. doi:10.2174/1568026615666150915111741
  • Chu CK, Beach JW, Jeong LS, et al. Enantiomeric synthesis of (+)-BCH-189 [(+)-(2S, 5R)−1-[2-(hydroxymethyl)−1, 3-oxathiolan-5-yl] cytosine] from D-mannose and its anti-HIV activity. J Org Chem 1991;56(23):6503–6505. doi:10.1021/jo00023a010
  • Pooladian B, Ghasemi E, Karimi-Jaberi Z. Catalyst-free and solvent-free synthesis of novel symmetrical bisthioglycolic acid derivatives. Green Chem Lett Rev. 2014;7(1):60–63. doi:10.1080/17518253.2014.895861
  • Ebrahimi S, Sayadi M. Syntheses of some novel and symmetrical bis (4-amino-4H-1, 2, 4-triazole-3-thiols). J Sulfur Chem. 2012;33(6):647–652. doi:10.1080/17415993.2012.721367
  • Naikoo RA, Singh P, Kumar R, et al. Solvent-free mechanochemical synthesis of bisthioglycolic acid derivatives: an efficient and versatile strategy for carbon–sulfur bond formation. J Sulfur Chem. 2022;43(2):117–123. doi:10.1080/17415993.2021.1983574
  • Kumar G, Bhargava G, Kumar R. Trio role of deep eutectic solvents in the green synthesis of 1, 4-dihydropyridine synthesis via hantzsch reaction. Polycyclic Aromat Compd. 2022: 1–14. doi:10.1080/10406638.2022.2133905
  • Perna FM, Vitale P, Capriati V. Deep eutectic solvents and their applications as green solvents. Curr Opin Green Sustain Chem. 2020;21:27–33. doi:10.1016/j.cogsc.2019.09.004
  • Ramón DJ, Guillena G. Deep eutectic solvents: synthesis, properties, and applications. 2020.
  • El Achkar T, Greige-Gerges H, Fourmentin S. Basics and properties of deep eutectic solvents: a review. Environ Chem Lett. 2021: 1–12. doi:10.1007/s10311-021-01225-8
  • Cui Y, Li C, Bao M. Deep eutectic solvents (DESs) as powerful and recyclable catalysts and solvents for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones. Green Process Synth. 2019;8(1):568–576. doi:10.1515/gps-2019-0026
  • Da Silva E, Dayoub W, Duguet N, et al. New research areas inspired by sustainable development. C R Chim. 2013;16(4):343–349. doi:10.1016/j.crci.2012.12.019
  • Hooshmand SE, Afshari R, Ramón DJ, et al. Deep eutectic solvents: cutting-edge applications in cross-coupling reactions. Green Chem. 2020;22(12):3668–3692. doi:10.1039/D0GC01494J
  • Wang A, Zheng X, Zhao Z, et al. Deep eutectic solvents to organic synthesis. Progr Chem. 2014;26(05):784. doi:10.7536/PC131124
  • Davidovich YA, Kozlov S. Reaction of mercaptocarboxylic acids with carbonyl compounds. Pharm Chem J. 2021;55(5):506–509. doi:10.1007/s11094-021-02449-2
  • Keshavarzipour F, Tavakol H. The synthesis of coumarin derivatives using choline chloride/zinc chloride as a deep eutectic solvent. J Iran Chem Soc. 2016;13:149–153. doi:10.1007/s13738-015-0722-9
  • Behmadi H, Niroomand S. Choline chloride: 2 ZnCl2 catalyzed efficient one-pot regioselective synthesis of dihydrobenzofuro [2, 3-b] benzofuran. Q J Iran Chem Commun. 2020;8(3):181–189.
  • Inaloo ID, Majnooni S. Carbon dioxide utilization in the efficient synthesis of carbamates by deep eutectic solvents (DES) as green and attractive solvent/catalyst systems. New J Chem. 2019;43(28):11275–11281. doi:10.1039/C9NJ02810B
  • Dindarloo Inaloo I, Majnooni S. Deep eutectic solvents (des) as green and efficient solvent/catalyst systems for the synthesis of carbamates and ureas from carbonates. ChemistrySelect. 2019;4(27):7811–7817. doi:10.1002/slct.201901567
  • Wang A, Xing P, Zheng X, et al. Deep eutectic solvent catalyzed Friedel–Crafts alkylation of electron-rich arenes with aldehydes. RSC Adv. 2015;5(73):59022–59026. doi:10.1039/C5RA08950F
  • Phadtare SB, Jarag KJ, Shankarling GS. Greener protocol for one pot synthesis of coumarin styryl dyes. Dyes Pigm. 2013;97(1):105–112. doi:10.1016/j.dyepig.2012.12.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.