94
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A simple synthetic approach to the construction of novel 2-amino-5-mercapto-6-(mercaptomethyl)-4-aryl-4H-pyran-3-carbonitriles

&
Pages 683-693 | Received 08 May 2023, Accepted 08 Aug 2023, Published online: 18 Aug 2023

References

  • Mandha SR, Siliveri S, Alla M, et al. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles. Bioorg Med Chem Lett. 2012;22:5272–5278. doi:10.1016/j.bmcl.2012.06.055
  • Kalaria PN, Satasia SP, Raval DK. Synthesis, characterization and biological screening of novel 5-imidazopyrazole incorporated fused pyran motifs under microwave irradiation. New J Chem. 2014;38:1512–1521. doi:10.1039/c3nj01327h
  • Kemnitzer W, Drewe J, Jiang S, et al. Discovery of 4-aryl-4 H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7, -positions. J Med Chem. 2007;50:2858–2864. doi:10.1021/jm070216c
  • Zhang G, Zhang Y, Yan J, et al. One-pot enantioselective synthesis of functionalized pyranocoumarins and 2-amino-4H-chromenes: discovery of a type of potent antibacterial agent. J Org Chem. 2012;77:878–888. doi:10.1021/jo202020m
  • Erichsen MN, Huynh TH, Abrahamsen B, et al. Structure-activity relationship study of first selective inhibitor of excitatory amino acid transporter subtype 1: 2-amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (UCPH-101). J Med Chem. 2010;53:7180–7191. doi:10.1021/jm1009154
  • Kaur R, Naaz F, Sharma S, et al. Screening of a library of 4-aryl/heteroaryl-4H-fused pyrans for xanthine oxidase inhibition: synthesis, biological evaluation and docking studies. Med Chem Res. 2015;24:3334–3349. doi:10.1007/s00044-015-1382-0
  • Mostafa EA, Khatab TK. Silica supported V2O5 as a catalyst promoted the synthesis of 4H-pyrans through multicomponent reaction under solvent free conditions. Organic Chem Indian J. 2018;14:126–131.
  • Fallah-Mehrjardi M, Foroughia M, Banitaba SH. Polyethylene glycol-bis(N-methyl-imidazolium)dihydroxide as an efficient and recyclable basic phase-transfer catalyst for the synthesis of 4H-pyran derivatives in aqueous media. Asian J Green Chem. 2020;4:75–86.
  • Taghva PH, Kabirifard H. Three-component efficient synthesis of 2-amino-3-cyano-4H-pyrans catalyzed by diammonium hydrogen phosphate in aqueous media. Curr Organocatal. 2021;8:187–194. doi:10.2174/2213337207999200726235542
  • Tashrifi Z, Mohammadi–Khanaposhtani M, Hamedifar H, et al. Synthesis and pharmacological properties of polysubstituted 2–amino–4H–pyran–3–carbonitrile derivatives. Mol Divers. 2020;24:1385–1431. doi:10.1007/s11030-019-09994-9
  • Liu J, Shi JT, Hao XC, et al. Synthesis, crystal structure and antitumor activity of ethyl 2-[(2-amino-3-cyano-4-phenethyl-4H-naphtho[1,2-b]pyran-8-yl) oxy]acetate. J Chem Res. 2018;42:486–489. doi:10.3184/174751918X15365767693793
  • Lee M, Rho HS, Choi K. Anti-inflammatory effects of a P-coumaric acid and Kojic Acid derivative in LPS-stimulated RAW264.7 macrophage cells. Biotechnol Bioprocess Eng. 2019;24:653–657. doi:10.1007/s12257-018-0492-1
  • Aiyelabola TO. Syntheses, characterization and biological activity of coordination compounds of 3-hydroxy-2-methyl-4H-pyran-4-one and its mixed ligand complexes with 1,2-diaminocyclohexane. Adv Biol Chem. 2021;11:106–125. doi:10.4236/abc.2021.113008
  • Aghajani M, Asghari S, Pasha GF, et al. Study of three-component reaction of α-ketoesters and active methylenes with OH-acids to synthesize new 2-amino-4H-pyran derivatives and evaluation of their antibacterial and antioxidant activities. Res Chem Intermed. 2020;46:1841–1855. doi:10.1007/s11164-019-04066-x
  • Mlostoń G, Capperucci A, Tanini D, et al. Dialkyl dicyanofumarates as oxidizing reagents for the conversion of thiols into disulfides and selenols into diselenides. Eur J Org Chem. 2017: 6831–6839. doi:10.1002/ejoc.201701066
  • Cremlyn RJ. An introduction to organosulfur chemistry. Chichester: John Wiley & Sons; 1996.
  • Koval IV. The chemistry of disulfides. Russ Chem Rev. 1994;63:735–750. doi:10.1070/RC1994v063n09ABEH000115
  • Sevier CS, Kaiser CA. Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol. 2002;3:836–847. doi:10.1038/nrm954
  • Gilbert HF. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol. 1990;63:69–172.
  • Bulleid NJ, Ellgaard L. Multiple ways to make disulfides. Trends Biochem Sci. 2011;36:485–492. doi:10.1016/j.tibs.2011.05.004
  • Gngora-Benítez M, Tulla-Puche J, Albericio F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem Rev. 2014;114:901–926.
  • Bakhotmah DA, Ali TE. Four-component domino reaction for the synthesis of novel 8-methyl-9-substituted-2,10-diaryl-2,3-dihydro-10H-pyrano[3,2-e][1,2,4,3]triazaphosphole [1,5-c]pyrimidines. Heterocycles. 2020;100:1914–1919. doi:10.3987/COM-20-14329
  • Ali TE, Bakhotmah DA, Assiri MA. Synthesis of some new functionalized Pyrano[50,3-c]Pyrazoles and Pyrazolo[4′,3':5,6]Pyrano[2,3-d]Pyrimidines bearing a chromone ring as antioxidant agents. Synth Commun. 2020;50:3314–3325. doi:10.1080/00397911.2020.1800744
  • Ali TE, Assiri MA, El-Shaaer HM, et al. Synthesis and in vitro antimicrobial, antioxidant and antiproliferative activities of some new pyrano[2,3-c]pyrazoles containing 1,2-azaphospholes, 1,3,2-diazaphosphinines and phosphonate moieties. Synth Commun. 2021;51:2478–2497. doi:10.1080/00397911.2021.1939059
  • Ali TE, Assiri MA. A convenient one-pot synthesis of novel functionalized thiophene, thieno[2,3-b]thiophene, thiopyran, and thiopyrano[2,3-b]thiopyran bearing phosphonate groups. J Sulfur Chem. 2021;42:490–498. doi:10.1080/17415993.2021.1909027
  • Jensen KA, Henriksen L. Studies of thioacids and their derivatives XIV. Reactions of carbon disulfide with active methylene compounds. Acta Chim Scand. 1968;22:1107–1128. doi:10.3891/acta.chem.scand.22-1107
  • Mehrabi H, Esfandiarpour Z, Davodian T. The reaction of active methylene compounds with carbon disulfide in the presence of arylidenemalononitriles: synthesis of 6-amino-2-(4,4-dimethyl/dihydro-2,6-dioxocyclohexylidene)-4-aryl-4H-1,3-dithiine-5-carbonitrile derivatives. J Sulfur Chem. 2018;39:164–172. doi:10.1080/17415993.2017.1405959
  • Schotte L. 1,3-Dimercaptoacetone and some of its derivatives. Acta Chim Scand. 1950;4:1304–1305. doi:10.3891/acta.chem.scand.04-1304
  • Lipina KV, Ershov OV, Fedoseev SV, et al. Synthesis of 3-R-sulfanyl-5-amino-1-phenyl-1H-pyrazole-4-carbonitriles. Russ J Org Chem. 2020;56:177–180. doi:10.1134/S1070428020010273
  • Tavernier D, Hosten N, Anteunis MJO, et al. The determination of the rotational strength of the gauche C-C-C-SH unit, based on the 1H-NMR conformational analysis of 2-Butanethiol. Bull Soc Chim Belg. 1982;91:839–844. doi:10.1002/bscb.19820911007
  • Nordstrand K, Aslund F, Meunier S, et al. Direct NMR observation of the Cys-14 thiol proton of reduced Escherichia coli glutaredoxin-3 supports the presence of an active site thiol-thiolate hydrogen bond. FEBS Lett. 1999;449:196–200. doi:10.1016/S0014-5793(99)00401-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.