61
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Magnetic nanoparticles supported copper (II) complex: Fe3O4@DABA-PQ-CuCl2 nanocomposite as an active magnetically recoverable catalyst for preparation of diaryl (aryl-heterocyclic) selenides

, , &
Pages 42-64 | Received 18 May 2023, Accepted 06 Aug 2023, Published online: 11 Sep 2023

References

  • Kakkar S, Narasimhan B. A comprehensive review on biological activities of oxazole derivatives. BMC Chem. 2019;13:16. DOI:10.1186/s13065-019-0531-9
  • Chen Z, Zhong W, Liu S, et al. Highly stereodivergent synthesis of chiral C4-ester-quaternary pyrrolidines: a strategy for the total synthesis of spirotryprostatin A. Org Lett [Internet]. 2023;25:3391–3396. DOI:10.1021/acs.orglett.3c00904
  • Zeng Q, Bie B, Guo Q, et al. Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution. Proc Natl Acad Sci [Internet]. 2020;117:17558–17563. DOI:10.1073/pnas.2004121117
  • Liu Z, Fan B, Zhao J, et al. Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater: formation, interfacial release and protective mechanisms. Corros Sci [Internet]. 2023;212:110957. DOI:10.1016/j.corsci.2022.110957
  • Satish G, Reddy KHV, Ramesh K, et al. An environmentally benign and efficient synthesis of 2-thio-substituted benzothiazoles. Eur J Chem. 2014;5:291–295. DOI:10.5155/eurjchem.5.2.291-295.861
  • Asiri YI, Alsayari A, Muhsinah AB, et al. Benzothiazoles as potential antiviral agents. J Pharm Pharmacol. 2020;72:1459–1480. DOI:10.1111/jphp.13331
  • Kazemi M. Magnetically reusable nanocatalysts in biginelli synthesis of dihydropyrimidinones (DHPMs). Synth Commun. 2020;50:1409–1445. DOI:10.1080/00397911.2020.1720740
  • Zhao C, Cheung CF, Xu P. High-efficiency sub-microscale uncertainty measurement method using pattern recognition. ISA Trans [Internet]. 2020;101:503–514. DOI:10.1016/j.isatra.2020.01.038
  • Chen D, Wang Q, Li Y, et al. A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere [Internet]. 2020;247:125869. DOI:10.1016/j.chemosphere.2020.125869
  • Chuai H, Zhang S-Q, Bai H, et al. Small molecule selenium-containing compounds: recent development and therapeutic applications. Eur J Med Chem. 2021;223:113621. DOI:10.1016/j.ejmech.2021.113621
  • Zade SS, Panda S, Singh HB, et al. Synthesis of diaryl selenides using the in situ reagent SeCl2. Tetrahedron Lett. 2005;46:665–669. DOI:10.1016/j.tetlet.2004.11.125
  • Guo T, Li Z, Bi L, et al. Recent advances in organic synthesis applying elemental selenium. Tetrahedron. 2022;112:132752. DOI:10.1016/j.tet.2022.132752
  • Wang H, Chen S, Liu G, et al. Synthesis of diaryl selenides via palladium-catalyzed debenzylative cross-coupling of aryl benzyl selenides with aryl bromides. Organometallics. 2018;37:4086–4091. DOI:10.1021/acs.organomet.8b00644
  • Rosario AR, Casola KK, Oliveira CES, et al. Copper oxide nanoparticle-catalyzed chalcogenation of the carbon-hydrogen bond in thiazoles: synthesis of 2-(organochalcogen)thiazoles. Adv Synth Catal [Internet]. 2013;355:2960–2966. DOI:10.1002/adsc.201300497
  • Guo T, Dong Z, Zhang P, et al. Direct selenation of imidazoheterocycles and indoles with selenium powder in a copper-catalyzed three-component one-pot system. Tetrahedron Lett. 2018;59:2554–2558. DOI:10.1016/j.tetlet.2018.05.046
  • Hu D, Liu M, Wu H, et al. Copper-catalyzed diarylation of Se with aryl iodides and heterocycles. Org Chem Front. 2018;5:1352–1355. DOI:10.1039/C8QO00066B
  • Kundu D. Synthetic strategies for aryl/heterocyclic selenides and tellurides under transition-metal-catalyst free conditions. RSC Adv. 2021;11:6682–6698. DOI:10.1039/D0RA10629A
  • Rathore V, Kumar S. Visible-light-induced metal and reagent-free oxidative coupling of: Sp 2 C-H bonds with organo-dichalcogenides: synthesis of 3-organochalcogenyl indoles. Green Chem [Internet]. 2019;21:2670–2676. DOI:10.1039/C9GC00007K
  • Lemir ID, Castro-Godoy WD, Heredia AA, et al. Metal- and photocatalyst-free synthesis of 3-selenylindoles and asymmetric diarylselenides promoted by visible light. RSC Adv. 2019;9:22685–22694. DOI:10.1039/C9RA03642C
  • Kobiki Y, Kawaguchi S, Ohe T, et al. Photoinduced synthesis of unsymmetrical diaryl selenides from triarylbismuthines and diaryl diselenides. Beilstein J Org Chem. 2013;9:1141–1147. DOI:10.3762/bjoc.9.127
  • Abdalkareem Jasim S, Solanki R, Mohamed Hasan Y, et al. An interesting and highly efficient route to 2-(arylethynyl)selanyl-azoles: Fe 3 O 4 -serine-CuI nanocomposite catalyzed three-component coupling reaction of azoles, Se powder, and alkynes. Polycycl Aromat Compd. 2023;43:1–17.
  • Matsumura M, Sakata Y, Iwase A, et al. Copper-catalyzed tandem cyclization of 2-(2-iodophenyl)imidazo[1,2-a]pyridine derivatives with selenium: Synthesis of benzo[b] selenophene-fused imidazo[1,2-a]pyridines. Tetrahedron Lett. 2016;57:5484–5488. DOI:10.1016/j.tetlet.2016.10.095
  • Goldani B, Ricordi VG, Seus N, et al. Silver-catalyzed synthesis of diaryl selenides by reaction of diaryl diselenides with aryl boronic acids. J Org Chem. 2016;81:11472–11476. DOI:10.1021/acs.joc.6b02108
  • Xu X, Wang W, Lu L, et al. Palladium complex immobilized on magnetic nanoparticles modified with 2-aminopyridine ligand: a novel and efficient recoverable nanocatalyst for C–S and C–Se coupling reactions. Catal Letters [Internet]. 2022;152:3031–3045. DOI:10.1007/s10562-021-03908-x
  • Kour J, Khajuria P, Verma PK, et al. Selective synthesis of bis-heterocycles via mono- and di-selenylation of pyrazoles and other heteroarenes. ACS Omega. 2022;7:13000–13009. DOI:10.1021/acsomega.2c00323
  • Matsumura M, Shibata K, Ozeki S, et al. Synthesis of unsymmetrical diaryl selenides: copper-catalyzed Se-arylation of diaryl diselenides with triarylbismuthanes. Synthesis (Stuttg). 2015;48:730–736. DOI:10.1055/s-0035-1561280
  • Mohammadi R. Magnetic copper ferrite nanoparticles catalyzed synthesis of benzimidazole, benzoxazole and benzothiazole derivatives. J Synth Chem [Internet]. 2022;1:22–26. Available from: https://www.jsynthchem.com/article_149220.html.
  • Kazemi M, Ghobadi M. Magnetically recoverable nano-catalysts in sulfoxidation reactions. Nanotechnol Rev [Internet]. 2017;6:549–571. DOI:10.1515/ntrev-2016-0113. Available from: http://www.degruyter.com/view/j/ntrev.2017.6.issue-6/ntrev-2016-0113/ntrev-2016-0113.xml.
  • Kong L, Liu Y, Dong L, et al. Enhanced red luminescence in CaAl 12 O 19 :Mn 4 + via doping Ga 3 + for plant growth lighting. Dalt Trans [Internet]. 2020;49:1947–1954. DOI:10.1039/C9DT04086B. Available from: http://xlink.rsc.org/?DOI=C9DT04086B.
  • Xia G, Zheng Y, Sun Z, et al. Fabrication of ZnAl-LDH mixed metal-oxide composites for photocatalytic degradation of 4-chlorophenol. Environ Sci Pollut Res [Internet]. 2022;29:39441–39450. DOI:10.1007/s11356-022-18989-3
  • Chen D, Savidge T. Comment on Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science (80-) [Internet]. 2015;349:936–936. DOI:10.1126/science.aab0095
  • Wan Q, Huang C-Y, Hou Z-W, et al. Organophotoelectrochemical silylation cyclization for the synthesis of silylated 3-CF 3 -2-oxindoles. Org Chem Front [Internet]. 2023; Available from: http://xlink.rsc.org/?DOI=D3QO00728F.
  • Chen H, Zhou Y, Guo W, et al. Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production. Chin Chem Lett. 2022;33:1831–1840. DOI:10.1016/j.cclet.2021.09.034
  • Kazemi M, Shiri L. Ionic liquid immobilized on magnetic nanoparticles: a nice and efficient catalytic strategy in synthesis of heterocycles. J Synth Chem [Internet]. 2022;1:1–7. Available from: https://www.jsynthchem.com/article_149201.html.
  • Chen L, Noory Fajer A, Yessimbekov Z, et al. Diaryl sulfides synthesis: copper catalysts in C–S bond formation. J Sulfur Chem [Internet]. 2019;40:451–468. DOI:10.1080/17415993.2019.1596268
  • Guo D, You S, Li F, et al. Engineering carbon nanocatalysts towards efficient degradation of emerging organic contaminants via persulfate activation: a review. Chinese Chem Lett. 2022;33:1–10. DOI:10.1016/j.cclet.2021.06.027
  • Liu Y, Fan B, Xu B, et al. Ambient-stable polyethyleneimine functionalized Ti3C2 T nanohybrid corrosion inhibitor for copper in alkaline electrolyte. Mater Lett [Internet]. 2023;337:133979. DOI:10.1016/j.matlet.2023.133979
  • Du W, Huang R, Huang X, et al. Copper-promoted heterogeneous Fenton-like oxidation of Rhodamine B over Fe3O4 magnetic nanocatalysts at mild conditions. Environ Sci Pollut Res. 2021;28:19959–19968. DOI:10.1007/s11356-020-12264-z
  • Govan J, Gun’ko YK. Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials. 2014;4:222–241. DOI:10.3390/nano4020222
  • Zuo L, Yu S, Zhang R, et al. Tunning Pd–Cu-based catalytic oxygen carrier for intensifying low-temperature methanol reforming. J Clean Prod [Internet]. 2023;410:137212. DOI:10.1016/j.jclepro.2023.137212
  • Sharma RK, Dutta S, Sharma S, et al. Fe3O4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chem [Internet]. 2016;18:3184–3209. DOI:10.1039/C6GC00864J
  • Kazemi M, Ghobadi M, Mirzaie A. Cobalt ferrite nanoparticles (CoFe2O4MNPs) as catalyst and support: magnetically recoverable nanocatalysts in organic synthesis. Nanotechnol Rev. 2018;7:43–68.
  • Guo W, Luo H, Jiang Z, et al. Ge-doped cobalt oxide for electrocatalytic and photocatalytic water splitting. ACS Catal [Internet]. 2022;12:12000–12013. DOI:10.1021/acscatal.2c03730
  • Lei Z, Hengliang W, Zhang L, et al. A study on the catalytic performance of the ZrO 2 @γ-Al2O3 hollow sphere catalyst for COS hydrolysis. New J Chem [Internet]. 2023;47:7070–7083. DOI:10.1039/D2NJ04970H
  • Khashei Siuki H, Ghamari Kargar P, Bagherzade G. New acetamidine Cu(II) Schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Sci Rep [Internet]. 2022;12:3771. DOI:10.1038/s41598-022-07674-7
  • Honari M, Kiasat AR, Sanaeishoar H, et al. Fe 3 O 4 @nSiO 2 @mSiO 2 /DBU: a novel and effective basic magnetic nanocatalyst in the multicomponent one pot synthesis of polyhydroacridines and polyhydroquinolines. Polycycl Aromat Compd. 2022;42:1728–1746.
  • Zhang Q, Yang X, Guan J. Applications of magnetic nanomaterials in heterogeneous catalysis. ACS Appl Nano Mater [Internet]. 2019;2:4681–4697. DOI:10.1021/acsanm.9b00976
  • Chen Z, Nasr SM, Kazemi M, et al. A mini-review: achievements in the thiolysis of epoxides. Mini Rev Org Chem [Internet]. 2019;17:352–362. DOI:10.2174/1570193X16666190723111746
  • Yu H, Zhu J, Qiao R, et al. Facile preparation and controllable absorption of a composite based on PMo 12 /Ag nanoparticles: photodegradation activity and mechanism”. ChemistrySelect [Internet]. 2022: 7. Available from: https://onlinelibrary.wiley.com/doi/10.1002slct.202103668.
  • Tang X, Ye J, Guo L, et al. Atomic insights into the Cu species supported on zeolite for direct oxidation of methane to methanol via low-damage HAADF-STEM. Adv Mater [Internet]. 2023;35, Available from: https://onlinelibrary.wiley.com/doi/10.1002adma.202208504.
  • Dalpozzo R. Magnetic nanoparticle supports for asymmetric catalysts. Green Chem. 2015;17:3671–3686. DOI:10.1039/C5GC00386E
  • Ghobadi M, Kargar Razi M, Javahershenas R, et al. Nanomagnetic reusable catalysts in organic synthesis. Synth Commun. 2021;51:647–669. DOI:10.1080/00397911.2020.1819328
  • Payra S, Saha A, Banerjee S. Recent advances on Fe-based magnetic nanoparticles in organic transformations. J Nanosci Nanotechnol. 2017;17:4432–4448. DOI:10.1166/jnn.2017.14195
  • Cheng T, Zhang D, Li H, et al. Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium. Green Chem. 2014;16:3401–3427. DOI:10.1039/C4GC00458B
  • Wang Z-L. Magnetically separable CuFe2O4 nanoparticles as a recoverable catalyst for the addition reaction of C(sp 3)–H bond of azaarenes to aldehydes. RSC Adv. 2015;5:5563–5566. DOI:10.1039/C4RA14486D
  • Fazl F, Torabi M, Yarie M, et al. Synthesis and application of novel urea–benzoic acid functionalized magnetic nanoparticles for the synthesis of 2,3-disubstituted thiazolidin-4-ones and hexahydroquinolines. RSC Adv. 2022;12:16342–16353. DOI:10.1039/D2RA02205B
  • Gholinejad M, Karimi B, Mansouri F. Synthesis and characterization of magnetic copper ferrite nanoparticles and their catalytic performance in one-pot odorless carbon-sulfur bond formation reactions. J Mol Catal A Chem. 2014;386:20–27. DOI:10.1016/j.molcata.2014.02.006
  • Shylesh S, Schünemann V, Thiel WR. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed [Internet]. 2010;49:3428–3459. DOI:10.1002/anie.200905684
  • Kidwai M, Jain A, Bhardwaj S. Magnetic nanoparticles catalyzed synthesis of diverse N-Heterocycles. Mol Divers. 2012;16:121–128. DOI:10.1007/s11030-011-9336-z
  • Kazemi M, Mohammadi M. Magnetically recoverable catalysts: catalysis in synthesis of polyhydroquinolines. Appl Organomet Chem [Internet]. 2020;34:e5400. Available from: https://onlinelibrary.wiley.com/doi/10.1002aoc.5400.
  • Wang Z, Dai L, Yao J, et al. Enhanced adsorption and reduction performance of nitrate by Fe–Pd–Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere [Internet]. 2021;281:130718. DOI:10.1016/j.chemosphere.2021.130718
  • Gebre SH. Recent developments in the fabrication of magnetic nanoparticles for the synthesis of trisubstituted pyridines and imidazoles: a green approach. Synth Commun. 2021: 1–31. DOI:10.1080/00397911.2021.1900257
  • Wang Z, Chen C, Liu H, et al. Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Sci Total Environ [Internet]. 2020;708:135063. DOI:10.1016/j.scitotenv.2019.135063
  • Rai P, Gupta D. Magnetic nanoparticles as green catalysts in organic synthesis-a review. Synth Commun. 2021;51:3059–3083. DOI:10.1080/00397911.2021.1968910
  • Kazemi M, Ghobadi M. Magnetically recoverable nano-catalysts in sulfoxidation reactions. Nanotechnol Rev. 2017;6:549–571.
  • Rafique J, Saba S, Rosário AR, et al. Regioselective, solvent- and metal-free chalcogenation of imidazo[1,2- a ]pyridines by employing I 2 /DMSO as the catalytic oxidation system. Chem A Eur J [Internet]. 2016;22:11854–11862. DOI:10.1002/chem.201600800
  • Gandeepan P, Mo J, Ackermann L. Photo-induced copper-catalyzed C–H chalcogenation of azoles at room temperature. Chem Commun [Internet]. 2017;53:5906–5909. DOI:10.1039/C7CC03107F
  • Guo T, Wei X-N, Zhu Y-L, et al. Copper-catalyzed one-pot synthesis of chalcogen-benzothiazoles/imidazo[1,2-a]pyridines with sulfur/selenium powder and aryl boronic acids. Synlett [Internet]. 2018;29:1530–1536. DOI:10.1055/s-0037-1609758

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.