41
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modeling stages of domino reaction of thiopyrano[4,3-b]indole-3(5H)-thiones and dimethyl acetylenedicarboxylate: a new synthetic route to γ-carbolines with thione group

, ORCID Icon, &
Pages 364-377 | Received 21 Sep 2023, Accepted 08 Nov 2023, Published online: 14 Nov 2023

References

  • Pellissier H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv Synth Catal. 2019;8:1733–1755. doi:10.1002/adsc.201801371
  • Christodoulou MS, Beccalli EM. Pd-catalyzed domino reactions involving alkenes to access substituted indole derivatives. Synthesis. 2020;52:2731–2760. doi:10.1055/s-0040-1707123
  • Mao J, Wang Z, Xu X. Synthesis of indoles through domino reactions of 2-fluorotoluenes and nitriles. Angew Chem Int Ed. 2019;58:1–7. doi:10.1002/anie.201904658
  • Pellissier H. Syntheses of natural and biologically relevant products through asymmetric metal-catalyzed domino reactions. A review. Org Prep Proced Int. 2019;51:311–344. doi:10.1080/00304948.2019.1590681
  • Tietze LF. Domino reactions in organic synthesis. Chem Rev. 1996;96(1):115–136. doi:10.1021/cr950027e
  • Tietze LF, Brasche G, Gericke KM. Domino reactions in organic synthesis. Wiley-VCH; 2006. doi:10.1002/9783527609925
  • Suzdalev KF, Vyalyh JV, Tkachev VV, et al. Alkyne–thiocarbonyl metathesis instead of Diels–Alder addition: coupling of thiopyrano[4,3-b]indole-3(5H)-thiones and dimethyl acetylenedicarboxylate. Tetrahedron. 2022;112:132751. doi:10.1016/j.tet.2022.132751
  • Suzdalev KF, Vyalyh JV, Tkachev VV, et al. Domino reactions of thiopyrano[4,3-b]indole-3(5H)-thiones and dimethyl acetylenedicarboxylate: quantum chemical investigation and experiment. J Sulphur Chem. 2023;44:248–259. doi:10.1080/17415993.2022.2139147
  • Voggu R, Karmakar A, Puli VS, et al. Design, synthesis, molecular docking study and biological evaluation of novel γ-carboline derivatives of latrepirdine (dimebon) as potent anticancer agents. Molecules. 2023;28:4965. doi:10.3390/molecules28134965
  • Dudhe P, Krishnan MA, Yadav K. Synthesis of 1-indolyl-3,5,8-substituted γ-carbolines: one-pot solvent-free protocol and biological evaluation. Beilstein J Org Chem. 2021;17:1453–1463. doi:10.3762/bjoc.17.101
  • Tan J, Wu B, Chen T, et al. Synthesis and pharmacological evaluation of tetrahydro-γ-carboline derivatives as potent anti-inflammatory agents targeting cyclic GMP−AMP synthase. J Med Chem. 2021;64:7667–7690. doi:10.1021/acs.jmedchem.1c00398
  • Bachurin SO, Makhaeva GF, Shevtsova EF, et al. Conjugates of methylene blue with γ-carboline derivatives as new multifunctional agents for the treatment of neurodegenerative diseases. Sci Rep. 2019;9:4873. doi:10.1038/s41598-019-41272-4
  • Ustyugov AA, Aksinenko AY, Vikharev YB. Fluorinated γ-carbolines as agents for delaying cognitive and motor dysfunctions in a transgenic model of neurodegenerative disorders. Russ Chem Bull. 2020;69:781–786. doi:10.1007/s11172-020-2833-4
  • Saramago LC, Santana MV, Gomes BF, et al. AI-driven discovery of SARS-CoV-2 main protease fragment-like inhibitors with antiviral activity in vitro. J Chem Inf Model. 2023;63:2866–2880. doi:10.1021/acs.jcim.3c00409
  • Yoshida Z, Sugimoto H, Sugimoto T, et al. Reactions of thiopyrylium cations with amines. J Org Chem. 1973;38:3990–3993. doi:10.1021/jo00987a005
  • Vyalyh JV, Suzdalev KF, Lisovin AV, et al. From 3-acyl-2-metylindoles to γ-carbolines: Li-promoted cycloaddition reaction and its quantum chemical study. J Org Chem. 2019;84:13721–13732. doi:10.1021/acs.joc.9b01926
  • Piccinni-Leopardi C, Fabre O, Zimmermann D. 13C n.m.r. spectra of some thiobenzamides. Correlation between 13C and 1H n.m.r. spectra and signal assignments of syn and anti CH groups. Org Magn Reson. 1976;8:536–538. doi:10.1002/mrc.1270081012
  • Suzdalev KF, Vyalyh JV, Tkachev VV, et al. Lithium-promoted cycloaddition of indole-2,3-dienolates and carbon disulfide as a one-pot route to thiopyrano[4,3-b]indole-3(5H)-thiones. J Org Chem. 2021;86:11698–11707. doi:10.1021/acs.joc.1c01200
  • CrysAlisPro, version 1.171.38.41, Rigaku Oxford Diffraction, 2015.
  • Sheldrick GM. Crystal structure refinement with SHELXL. Acta Cryst. 2015;A71:3–8. doi:10.1107/S2053229614024218

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.