79
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Methanesulfenylation of mercaptans and β-dicarbonyls with DMSO

, , , , , , , , & show all
Pages 330-345 | Received 11 Sep 2023, Accepted 27 Nov 2023, Published online: 07 Dec 2023

References

  • Lutter FH, Grokenberger L, Perego LA, et al. Regioselective functionalization of aryl azoles as powerful tool for the synthesis of pharmaceutically relevant targets. Nat Commun. 2020;11:4443. doi:10.1038/s41467-020-18188-z
  • Landgraf BJ, Arcinas AJ, Lee K-H, et al. Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB. J Am Chem Soc. 2013;135:15404–15416. doi:10.1021/ja4048448
  • Liedtke AJ, Crews BC, Daniel CM, et al. Cyclooxygenase-1-selective inhibitors based on the (E)-2'-desmethyl-sulindac sulfide scaffold. J Med Chem. 2012;55:2287–2300. doi:10.1021/jm201528b
  • Lee K-H, Saleh L, Anton BP, et al. Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily. Biochemistry. 2009;48:10162–10174. doi:10.1021/bi900939w
  • Mosrin M, Knochel P. Regio- and chemoselective multiple functionalization of pyrimidine derivatives by selective magnesiations using TMPMgCl·LiCl. Org Lett. 2008;10:2497–2500. doi:10.1021/ol800790g
  • Sztanke K, Pasternak K, Sidor-Wójtowicz A, et al. Synthesis of imidazoline and imidazo[2,1-c][1,2,4]triazole aryl derivatives containing the methylthio group as possible antibacterial agents. Bioorgan Med Chem. 2006;14:3635–3642. doi:10.1016/j.bmc.2006.01.019
  • Meng Z, Fürstner A. Total syntheses of Scabrolide A and nominal Scabrolide B. J Am Chem Soc. 2022;144:1528–1533. doi:10.1021/jacs.1c12401
  • Dieter RK, Silks LA, Fishpaugh JR, et al. Control of chemo- and stereoselectivity in the reactions of organocuprates with α-oxoketene dithioacetals. J Am Chem Soc. 1985;107:4679. doi:10.1021/ja00302a014
  • Le Drian C, Greene AE. Efficient, stereocontrolled total syntheses of racemic and natural brefeldin-A. J Am Chem Soc. 1982;104:5473. doi:10.1021/ja00384a038
  • Greene AE, Le Drian C, Crabbé P. Conversion of carbalkoxymethyl groups to .gamma.γ-oxocrotonate derivatives. J Org Chem. 1980;45:2713–2715. doi:10.1021/jo01301a034
  • Ogura K, Sanada K, Takahashi K, et al. A novel method for preparation of 2-(methyl- or phehnylthio)alkanoic esters. Tetrahedron Lett. 1982;23:4035–4038. doi:10.1016/S0040-4039(00)88689-X
  • Baek HH, Kim CJ, Ahn BH, et al. Aroma extract dilution analysis of a beeflike process flavor from extruded enzyme-hydrolyzed soybean protein. J Agric Food Chem. 2001;49:790–793. doi:10.1021/jf000609j
  • Kumazawa K, Masuda H. Investigation of the change in the flavor of a coffee drink during heat processing. J Agric Food Chem. 2003;51:2674–2678. doi:10.1021/jf021025f
  • Omata A, Yomogida K, Nakamura S, et al. New sulfur components of rose oil. Flavour Frag J. 1991;6:149–152. doi:10.1002/ffj.2730060211
  • Moyer TB, Parsley NC, Sadecki PW, et al. Leveraging orthogonal mass spectrometry based strategies for comprehensive sequencing and characterization of ribosomal antimicrobial peptide natural products. Nat Prod Rep. 2021;38:489–509. doi:10.1039/D0NP00046A
  • Azarkan M, Matagne A, Wattiez R, et al. Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex. Phytochemistry. 2011;72:1718–1731. doi:10.1016/j.phytochem.2011.05.009
  • Reif A, Lam K, Weidler S, et al. Natural glycoforms of human interleukin 6 show atypical plasma clearance. Angew Chem Int Ed. 2021;60:2–10. doi:10.1002/anie.202101496
  • Hamel P, Préville P. Regioselective synthesis of mixed indole 2,3-bis(sulfides). A study of the mechanism of the second sulfenylation of indole. J Org Chem. 1996;61:1573–1577. doi:10.1021/jo951420n
  • Mikolajczyk M, Kielbasinski P, Grzejszczak S. A new synthesis of α-alkylthio-ketones(α-sulphenyllated ketones). Synthesis. 1983: 332–334. doi:10.1055/s-1983-30331
  • Friesen RW, Vice SF, Findlay CE, et al. Methanesulfenylation of 2,3-dialkylindoles: synthesis and reactions of 3-methylthioindolenines. Tetrahedron Lett. 1985;26:161–164. doi:10.1016/S0040-4039(00)61869-5
  • Fujiu M, Yokoo K, Aoki T, et al. Synthesis of 2-thio-substituted 1,6-diazabicyclo[3.2.1]octane derivatives, potent β–lactamase inhibitors. J Org Chem. 2020;85:9650–9660. doi:10.1021/acs.joc.0c00980
  • Wladislaw B, Bueno MA, Marzorati L, et al. Phase Transfer Catalysis (PTC) sulfanylation of some 2-methylsulfinyl-cyclanones. J Org Chem. 2004;69:9296–9298. doi:10.1021/jo048751x
  • Gohier F, Castanet A-S, Mortier J. The first regioselective metalation and functionalization of unprotected 4-halobenzoic acids. J Org Chem. 2005;70:1501–1504. doi:10.1021/jo0483365
  • Gros P, Choppin S, Mathieu J, et al. Lithiation of 2-heterosubstituted pyridines with BuLi-LiDMAE: evidence for regiospecificity at C-6. J Org Chem. 2002;67:234–237. doi:10.1021/jo015855o
  • Lu H, Tong Z, Peng LF, et al. Recent advances in the use of dimethyl sulfoxide as a synthon in organic chemistry. Top Curr Chem. 2022;380:55. doi:10.1007/s41061-022-00411-8
  • Tashrifi Z, Khanaposhtani MM, Larijani B, et al. Dimethyl sulfoxide: yesterday's solvent, today's reagent. Adv Synth Catal. 2019;362:65–86. doi:10.1002/adsc.201901021
  • Wu XF, Natte K. The applications of dimethyl sulfoxide as reagent in organic synthesis. Adv Synth Catal. 2016;358:336–352. doi:10.1002/adsc.201501007
  • Jones-Mensah E, Karki M, Magolan J. Dimethyl sulfoxide as a synthon in organic chemistry. Synthesis. 2016;48:1421–1436. doi:10.1055/s-0035-1560429
  • Palit K, Sepay N, Panda N. Arylative methylation of 2,3-dihydropyrazines and pyrazinones using dimethyl sulfoxide as a C1 source. J Org Chem. 2023;88:2931–2941. doi:10.1021/acs.joc.2c02675
  • Wakade SB, Tiwari DK, Prabhakar Ganesh PSK, et al. Transition-Metal-Free quinoline synthesis from acetophenones and anthranils via sequential one-carbon homologation/conjugate addition/annulation cascade. Org Lett. 2017;19:4948–4951. doi:10.1021/acs.orglett.7b02429
  • Xie Z, Li P, Hu Y, et al. Visible-light-induced and iron-catalyzed methylation of N-arylacrylamides with dimethyl sulphoxide: A convenient access to 3-ethyl-3-methyl oxindoles. Org Biomol Chem. 2017;15:4205–4211. doi:10.1039/C7OB00779E
  • Li XM, Wang X, Li YD, et al. Application of DMSO as a methylthiolating reagent in organic synthesis. Org Biomol Chem. 2022;20:4471–4495. doi:10.1039/D2OB00570K
  • Gao X, Pan X, Gao J, et al. NH4I–mediated three-component coupling reaction: metal-free synthesis of β–alkoxy methyl sulfides from DMSO, alcohols, and styrenes. Org Lett. 2015;17:1038–1041. doi:10.1021/acs.orglett.5b00170
  • Fan J, Zhao Y, Zhang J, et al. Acid-controlled access to β–sulfenyl ketones and α,β-disulfonyl ketones by pummerer reaction of β–keto sulfones and sulfoxides. J Org Chem. 2020;85:691–701. doi:10.1021/acs.joc.9b02766
  • Shen T, Huang X, Liang Y, et al. Cu-catalyzed transformation of alkynes and alkenes with azide and dimethyl sulfoxide reagents. Org Lett. 2015;17:6186–6189. doi:10.1021/acs.orglett.5b03179
  • Pramanik MM, Rastogi N. Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO. Chem Commun. 2016;52:8557–8560. doi:10.1039/C6CC04142F
  • Wu Y, Zhang MS, Zhang YL, et al. NBS-activated cross-dehydrogenative esterification of carboxylic acids with DMSO. Org Chem Front. 2020;7:2719–2724. doi:10.1039/D0QO00617C
  • Zhang J, Cheng S, Cai Z, et al. Radical addition cascade cyclization of 1,6-enynes with DMSO to access methylsulfonylated and carbonylated benzofurans under transition-metal-free conditions. J Org Chem. 2018;83:9344–9352. doi:10.1021/acs.joc.8b01265
  • Zhang T, Dai YF, Cheng SW, et al. A facile method for the sulfenyllactonization of alkenoic acids using dimethyl sulfoxide activated by oxalyl chloride. Synthesis. 2017;49:1380–1386. doi:10.1055/s-0036-1590821
  • Gao Y, Cheng SW, Zhang T, et al. Dimethyl sulfoxide/oxalyl chloride: A useful reagent for sulfenyletherification. Synthetic Commun. 2018;48:2773–2781. doi:10.1080/00397911.2018.1524495
  • Lan LY, Gao Y, Ding R, et al. A facile sulfenylchlorination of alkenes with Me2SO/(COCl)2. Synthetic Commun. 2019;49:539–549. doi:10.1080/00397911.2018.1560473
  • Liu Y, Gao Y, Wang Z, et al. The oxysulfenylation of alkenes with dimethyl sulfoxide/oxalyl chloride. Synth Commun. 2019;49:2662–2670. doi:10.1080/00397911.2019.1639192
  • Huang S, Wang H, Liu YG, et al. A novel practical preparation of methyl methanethiosulfonate from dimethyl sulfoxide initiated by a catalytic amount of (COCl)2 or anhydrous HCl. J Sulfur Chem. 2021;42:604–613. doi:10.1080/17415993.2021.1932887
  • Wang H, Xi ZY, Huang S, et al. Convenient preparation of N-acylbenzoxazines from phenols, nitriles, and DMSO initiated by a catalytic amount of (COCl)2. J Org Chem. 2021;86:4932–4943. doi:10.1021/acs.joc.0c02768
  • Zhang L, Nagaraju S, Paplal B, et al. Sulfonium salts enable the direct sulfenylation of activated C(sp3)-H bonds. Eur J Org Chem. 2021: 1365–1369. doi:10.1002/ejoc.202001569
  • Leriverend C, Metzner P. A new mild synthesis of unsymmetrical disulfides by reaction of dithioperoxyesters with thiols. Synthesis. 1994: 761–762. doi:10.1055/s-1994-25563
  • Shmakov VS, Lyapina NK, Furlei II, et al. Thiols and disulfides of gas condensates from the Caspian Sea depression. Neftekhimiya. 1988;28:9–14.
  • Ogura K, Furukawa S, Tsuchihashi G. Mercaptomethylation reaction using cyclohexanone dimethyl dithioacetal S-oxide. Synthesis. 1976: 202–204. doi:10.1055/s-1976-23993
  • Eiji Y, Yasutaka K, Kei T, et al. Convenient unsymmetrical disulfane synthesis: basic zeolite-catalyzed thiol-disulfane exchange reaction. Chem Cat Chem. 2021;13:4694–4699.
  • Huber U, Bergamin D. Novel access to furan-3-thiols and derivatives, impact meat-flavor compounds. Helv Chim Acta. 1993;76:2528–2536. doi:10.1002/hlca.19930760711
  • Yang K, Hu Q, Li Q, et al. Metal-free and NBS-mediated direct thiol-disulfide exchange reaction to access unsymmetrical disulfides. Eur J Org Chem. 2023;26:e202300394. doi:10.1002/ejoc.202300394
  • Bica K, Gaertner P. Metal-containing ionic liquids as efficient catalysts for hydroxymethylation in water. Eur J Org Chem. 2008: 3453–3456. doi:10.1002/ejoc.200800323

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.