173
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Chalcone-based novel mono and bisthiocarbohydrazone: synthesis, crystal structure, antioxidant property and theoretical evaluation

, , , , &
Pages 346-363 | Received 24 Aug 2023, Accepted 23 Feb 2024, Published online: 04 Mar 2024

References

  • Bonaccorso C, Marzo T, La Mendola D. Biological applications of thiocarbohydrazones and their metal complexes: a perspective review. Pharmaceuticals. 2020;13(1):1–19.
  • Sankhe S, Sarvade MP. Metal-based benzilmonoximethiocarbohydrazide-p-chlorobenzaldehyde: their preparation, characterisation, coordination behaviour and biological activity. Eur Chem Bull. 2023;12:4169–4175.
  • Sathisha MP, Shetti UN, Revankar VK, et al. Synthesis and antitumor studies on novel Co(II), Ni(II) and Cu(II) metal complexes of bis(3-acetylcoumarin) thiocarbohydrazone. Eur J Med Chem. 2008;43(11):2338–2346.
  • Khan S, Ullah H, Hussain R, et al. Synthesis, in vitro bio-evaluation, and molecular docking study of thiosemicarbazone-based isatin/bis-Schiff base hybrid analogues as effective cholinesterase inhibitors. J Mol Struct. 2023;1284:135351.
  • Cvijetić IN, Herlah B, Marinković A, et al. Phenotypic discovery of thiocarbohydrazone with anticancer properties and catalytic inhibition of human DNA topoisomerase IIα. Pharmaceuticals. 2023;16(3):341.
  • Zafarian H, Sedaghat T, Motamedi H, et al. A multiprotic ditopic thiocarbohydrazone ligand in the formation of mono-and di-nuclear organotin(IV) complexes: crystal structure, antibacterial activity and DNA cleavage. J Organomet Chem. 2016;825-826:25–32.
  • Kaya Y, Erçağ A, Kaya K. Synthesis, characterization and antioxidant activities of dioxomolybdenum(VI) complexes of new Schiff bases derived from substituted benzophenones. J Coord Chem. 2018;71(20):3364–3380.
  • Nalawade RA, Nalawade AM, Rajmane SV, et al. Microwave assisted synthesis, structure, spectral characterization and biological studies of (E)-N'-(4-chlorobenzylidene)hydrazinecarbothiohydrazide. Int J Pharm Sci Invent. 2015;4(5):1–4.
  • Božić AR, Bjelogrlić SK, Novaković IT, et al. Antimicrobial activity of thiocarbohydrazones: experimental studies and alignment-independent 3D QSAR models. ChemistrySelect. 2018;3(7):2215–2221.
  • Kaya Y. Investigation of spectroscopic, crystallographic, thermal and antioxidant properties of mononuclear dioxomolybdenum(VI) complexes derived from a new symmetric bisthiocarbohydrazone. Polyhedron. 2022;227:116151.
  • Ali TE-S. Utility of thiocarbohydrazide in heterocyclic synthesis. J Sulfur Chem. 2009;30(6):611–647.
  • Mendes EP, Goulart CM, Chaves OA, et al. Evaluation of novel chalcone-thiosemicarbazones derivatives as potential anti-Leishmania amazonensis agents and its HSA binding studies. Biomolecules. 2019;9(11):643.
  • Elkanzi NAA, Hrichi H, Alolayan RA, et al. Synthesis of chalcones derivatives and their biological activities: a review. ACS Omega. 2022;7(32):27769–27786.
  • Elkhalifa D, Al-Hashimi I, Al Moustafa A-E, et al. A comprehensive review on the antiviral activities of chalcones. J Drug Targeting. 2021;29(4):403–419.
  • Mittal A, Vashistha VK, Das DK. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review. Free Radical Res. 2022;56(5-6):378–397.
  • Ouyang Y, Li J, Chen X, et al. Chalcone derivatives: role in anticancer therapy. Biomolecules. 2021;11(6):894.
  • Adelusi TI, Du L, Chowdhury A, et al. Signaling pathways and proteins targeted by antidiabetic chalcones. Life Sci. 2021;284:118982.
  • Dharmasivam M, Kaya B, Wijesinghe T, et al. Designing tailored thiosemicarbazones with bespoke properties: the styrene moiety imparts potent activity, inhibits heme center oxidation, and results in a novel “stealth zinc(II) complex”. J Med Chem. 2023;66(2):1426–1453.
  • Bhatt P, Sreekanth K, Jha A. Facile synthesis of novel bis-derivatives of 2,5-diamino-thiadiazole/N,N′-thiocarbohydrazide and their biological perspective. Res Chem Intermed. 2018;44:7241–7258.
  • Georgiou N, Katsogiannou A, Skourtis D, et al. Conformational properties of new thiosemicarbazone and thiocarbohydrazone derivatives and their possible targets. Molecules. 2022;27(8):2537.
  • Kaya S, Robles-Navarro A, Mejía E, et al. On the prediction of lattice energy with the fukui potential: some supports on hardness maximization in inorganic solids. The J Phys Chem A. 2022;126(27):4507–4516.
  • Kaya S, Putz MV. Atoms-in-molecules’ faces of chemical hardness by conceptual density functional theory. Molecules. 2022;27(24):8825.
  • Chakraborty A, Pan S, Chattaraj PK. Biological activity and toxicity: a conceptual DFT approach. App Density Funct Theory Biol Bioinorganic Chem. 2013;150:143–179.
  • Pal R, Patra SG, Chattaraj PK. Quantitative structure–toxicity relationship in bioactive molecules from a conceptual DFT perspective. Pharmaceuticals. 2022;15(11):1383.
  • Kristanti A, Suwito H, Aminah NS, et al. Synthesis of some chalcone derivatives, in vitro and in silico toxicity evaluation. Rasayan J Chem. 2020;13(1):654–662.
  • Muthukumar M, Sivakumar S, Viswanathamurthi P, et al. Studies on ruthenium(III) chalcone thiosemicarbazone complexes as catalysts for carbon–carbon coupling. J Coord Chem. 2010;63(2):296–306.
  • Burns GR. Metal complexes of thiocarbohydrazide. Inorg Chem. 1968;7(2):277–283.
  • APEX2, version 2014.11-0, Bruker. Bruker AXS Inc. Madison (WI): APEX2, version 201411-0; 2014.
  • Sheldrick GM. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A: Found Adv. 2015;71(1):3–8.
  • Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C: Struct Chem. 2015;71(1):3–8.
  • Dolomanov OV, Bourhis LJ, Gildea RJ, et al. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr. 2009;42(2):339–341.
  • Apak R, Güçlü K, Özyürek M, et al. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52(26):7970–7981.
  • Kaya Y, Erçağ A, Kaya S, et al. New mixed-ligand iron(III) complexes containing thiocarbohydrazones: preparation, characterization, and chemical reactivity analysis through theoretical calculations. Appl Organomet Chem. 2022;36(7):e6762.
  • Sánchez-Moreno C, Larrauri JA, Saura-Calixto F. A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric. 1998;76(2):270–276.
  • Islam N, Kaya S. Conceptual density functional theory and its application in the chemical domain. New Jersey: CRC Press; 2018.
  • Berk Ş, Kaya S, Akkol EK, et al. A comprehensive and current review on the role of flavonoids in lung cancer: experimental and theoretical approaches. Phytomedicine. 2022;98:153938.
  • Arslan BS, Derin Y, Mısır BA, et al. Effect of electron donors on the photophysical and theoretical properties of BODIPY dyes based on tetrazolo [1,5-a] quinoline. J Mol Struct. 2022;1267:133608.
  • Parr RG, von Szentpály L, Liu S. Electrophilicity index. J Am Chem Soc. 1999;121(9):1922–1924.
  • von Szentpály L, Kaya S, Karakuş N. Why and when is electrophilicity minimized? New theorems and guiding rules. The J Phys Chem A. 2020;124(51):10897–10908.
  • Chamorro E, Chattaraj PK, Fuentealba P. Variation of the electrophilicity index along the reaction path. The J Phys Chem A. 2003;107(36):7068–7072.
  • Gázquez JL, Cedillo A, Vela A. Electrodonating and electroaccepting powers. The J Phys Chem A. 2007;111(10):1966–1970.
  • Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica. 1934;1(1-6):104–113.
  • Kaya Y, Erçağ A, Uğuz Ö, et al. New asymmetric bisthiocarbohydrazones and their mixed ligand nickel(II) complexes: synthesis, characterization, crystal structure, electrochemical-spectroelectrochemical property, antimicrobial and antioxidant activity. Polyhedron. 2021;207:115372.
  • Liu J, Chen C, Wu F, et al. Microwave-assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives. Chem Biol Drug Des. 2013;82(1):39–47.
  • Mrđan GS, Vastag GG, Škorić DĐ, et al. Synthesis, physicochemical characterization, and TD–DFT calculations of monothiocarbohydrazone derivatives. Struct Chem. 2021;32:1231–1245.
  • Ndoye C, Gaye AA, Fall A, et al. Synthesis of mono substituted asymmetrical (E)-1-(1-(pyridin-2-yl) ethylidene)thiocarbonohydrazide: structural characterization and antioxidant activity study. IOSR J Appl Chem. 2022;15(2):14–23.
  • Kaya Y, Erçağ A, Koca A. New square-planar nickel(II)-triphenylphosphine complexes containing ONS donor ligands: synthesis, characterization, electrochemical and antioxidant properties. J Mol Struct. 2020;1206:127653.
  • da Cunha Xavier J, de Almeida-Neto FWQ, Rocha JE, et al. Spectroscopic analysis by NMR, FT-Raman, ATR-FTIR, and UV-Vis, evaluation of antimicrobial activity, and in silico studies of chalcones derived from 2-hydroxyacetophenone. J Mol Struct. 2021;1241:130647.
  • Yıldız M, Bingul M, Zorlu Y, et al. Dimethoxyindoles based thiosemicarbazones as multi-target agents; synthesis, crystal interactions, biological activity and molecular modeling. Bioorg Chem. 2022;120:105647.
  • Apak R, Özyürek M, Güçlü K, et al. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem. 2016;64(5):997–1027.
  • Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011;125(2):288–306.
  • Kaya S, Kaya C. A new equation for calculation of chemical hardness of groups and molecules. Mol Phys. 2015;113(11):1311–1319.
  • Kaya S, Kaya C. A new method for calculation of molecular hardness: a theoretical study. Comput Theor Chem. 2015;1060:66–70.
  • Pearson RG. Hard and soft acids and bases. J Am Chem Soc. 1963;85(22):3533–3539.
  • Kaya S, Kaya C. A simple method for the calculation of lattice energies of inorganic ionic crystals based on the chemical hardness. Inorg Chem. 2015;54(17):8207–8213.
  • Kaya S, Kaya C. A new equation based on ionization energies and electron affinities of atoms for calculating of group electronegativity. Comput Theor Chem. 2015;1052:42–46.
  • Hashim KKM, Manoj E. DNA and BSA binding studies of new Pd(II) bisthiocarbohydrazone complexes: from anticancer drug analogue to anticovid candidates. Inorg Chem Commun. 2023;157:111326.
  • Mohammed Hashim KK, Manoj E, Prathapachandra Kurup MR. Bis(thio)carbohydrazone luminogens with AIEE and ACQ features and their in silico investigations with SARS-CoV-2. ChemistrySelect. 2022;7(28):e202201229.
  • Jacob L, Vert J-P. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics. 2008;24(19):2149–2156.
  • Guclu G, Tas A, Dincer E, et al. Biological evaluation and in silico molecular docking studies of Abies cilicica (Antoine & Kotschy). Carrière resin. J Mol Struct. 2023;1288:135740.
  • Hetényi C, van der Spoel D. Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci. 2002;11(7):1729–1737.
  • Kaya Y, Kaya S, Berisha A, et al. Cyclocondensation of 3,4-diaminobenzophenone with glyoxal: synthesis, X-ray structure, density functional theory calculation and molecular docking studies. J Mol Struct. 2023;1291:135973.
  • Liu Y, Yang X, Gan J, et al. CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022;50(W1):W159–W164.
  • Liu Y, Grimm M, Dai W-t, et al. CB-Dock: a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol Sin. 2020;41(1):138–144.
  • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791.
  • Hashim KKM, Manoj E, Kurup MRP. A novel manganese(II) bisthiocarbohydrazone complex: crystal structures, Hirshfeld surface analysis, DFT and molecular docking study with SARS-CoV-2. J Mol Struct. 2021;1246:131125.
  • Drew HR, Wing RM, Takano T, et al. Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci. 1981;78(4):2179–2183.
  • Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289–293.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2):455–461.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.