45
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Solvent-controlled structural variation of two Cd(II) compounds derived from thiophene dicarboxylate and 4-imidazol-1-yl-pyridine mixed ligands

, &
Pages 500-510 | Received 10 Jan 2024, Accepted 11 May 2024, Published online: 26 May 2024

References

  • Ma Z, Moulton B. Recent advances of discrete coordination complexes and coordination polymers in drug delivery. Coord Chem Rev. 2011;255:1623–1641. doi:10.1016/j.ccr.2011.01.031
  • Cook T, Zheng Y, Stang P. Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem Rev. 2013;113:734–777. doi:10.1021/cr3002824
  • Chakrabarty R, Mukherjee P, Stang P. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem Rev. 2011;111:6810–6918. doi:10.1021/cr200077m
  • Xue L, Lei X, Liu S, et al. Two crystalline Zn(II)-viologen compounds with photochromism, photomodulated luminescence and water-induced reversible crystal-to-amorphous transformation. J Alloy Compd. 2023;965:171464. doi:10.1016/j.jallcom.2023.171464
  • Li Z, Li M, Xu T, et al. A viologen-derived luminescent material exhibiting photochromism, photocontrolled luminescence and selective detection of Cr2O72− in aqueous solution. Spectrochim Acta A. 2024;306:123579. doi:10.1016/j.saa.2023.123579
  • Li N, Feng R, Zhu J, et al. Conformation versatility of ligands in coordination polymers: from structural diversity to properties and applications. Coord Chem Rev. 2018;375:558–586. doi:10.1016/j.ccr.2018.05.016
  • Zhang X, Wang W, Hu Z, et al. Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord Chem Rev. 2015;284:206–235. doi:10.1016/j.ccr.2014.10.006
  • Seetharaj R, Vandana P, Arya P, et al. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab J Chem. 2019;12:295–315. doi:10.1016/j.arabjc.2016.01.003
  • Chakrabarty R, Mukherjee P, Stang P. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem Rev. 2011;111:6810–6918. doi:10.1021/cr200077m
  • Kuznetsova A, Matveevskaya V, Pavlov D, et al. Coordination polymers based on highly emissive ligands: synthesis and functional properties. Materials (Basel). 2020;13:2699. doi:10.3390/ma13122699
  • Li L, Wang S, Chen T, et al. Solvent-dependent formation of Cd(II) coordination polymers based on a C2-symmetric tricarboxylate linker. Cryst Growth Des. 2012;12:4109–4115. doi:10.1021/cg300617h
  • Gallego A, Hermosa C, Castillo O, et al. Solvent-induced delamination of a multifunctional two dimensional coordination polymer. Adv Mater. 2013;25:2141–2146. doi:10.1002/adma.201204676
  • Qu L, Zhu Y, Li Y, et al. Solvent-induced synthesis of zinc(II) and manganese(II) coordination polymers with a semirigid tetracarboxylic acid. Cryst Growth Des. 2011;11:2444–2452. doi:10.1021/cg200229h
  • Contreras-Pereda N, Hayati P, Suárez-García S, et al. Delamination of 2D coordination polymers: the role of solvent and ultrasound. Ultrason Sonochem. 2019;55:186–195. doi:10.1016/j.ultsonch.2019.02.014
  • Zhao X, Sun W. The organic ligands with mixed N-/O-donors used in construction of functional metal–organic frameworks. CrystEngComm. 2014;16:3247–3258. doi:10.1039/c3ce41791c
  • Liu G, Huang Y, Chu Q, et al. Effect of N-donor ancillary ligands on supramolecular architectures of a series of zinc(II) and cadmium(II) complexes with flexible tricarboxylate. Cryst Growth Des. 2008;8(9):3233–3245. doi:10.1021/cg701137d
  • Huang Q, Zhao L, Zhu G, et al. Outstanding performance of thiophene-based metal-organic frameworks for fluoride capture from wastewater. Sep Purif Technol. 2022;298:121567. doi:10.1016/j.seppur.2022.121567
  • Xue L, Wang Q. Two 2D Zn(II) coordination polymers assembled from thiophene dicarboxylate and flexible N-(4-pyridylmethyl)imidazole derivatives: syntheses, crystal structures, and photoluminescent properties. J Sulfur Chem. 2023;44:64–73. doi:10.1080/17415993.2022.2101890
  • Li Z, Zhang J, Qin Q. Synthesis, structure and luminescence properties of a three-dimensional Cd(II) coordination polymer with (3,7)-connected topology. J Sulfur Chem. 2020;41:508–516. doi:10.1080/17415993.2020.1766462
  • Demessence A, Rogez G, Welter R, et al. Structure and magnetic properties of a new cobalt(II) thiophenedicarboxylate coordination polymer showing unprecedented coordination. Inorg Chem. 2007;46:3423–3425. doi:10.1021/ic070046u
  • Li Z, Xue L, Li S, et al. Different metal-ligand ratios regulated two Cd(II)-containing viologen-derived photochromic coordination polymers. Dyes Pigm. 2022;200:110129. doi:10.1016/j.dyepig.2022.110129
  • Xue L. Crystal structure of catena-poly[tetraaqua(µ2-4-(1H-imidazol-1-yl)pyridine-κ2N:N′))zinc(II)]thiophene-2,5-dicarboxylate, C14H17N3O8ZnS. Z Kristallogr NCS. 2019;234:61–63.
  • Dolomanov O, Bourhis L, Gildea R, et al. OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst. 2009;42:339–341. doi:10.1107/S0021889808042726
  • Sheldrick G. SHELXT-integrated space-group and crystal-structure determination. Acta Cryst. 2015;A71:3–8.
  • Sheldrick G. Crystal structure refinement with SHELXL. Acta Cryst. 2015;C71:3–8.
  • Tunsrichon S, Sukpattanacharoen C, Escudero D, et al. A solid-state luminescent Cd(II) supramolecular coordination framework based on mixed luminophores as a sensor for discriminatively selective detection of amine vapors. Inorg Chem. 2020;59:6176–6186. doi:10.1021/acs.inorgchem.0c00297
  • Buta I, Nistor MA, Lönnecke P, et al. One-dimensional cadmium(II) coordination polymers: Structural diversity, luminescence and photocatalytic properties. J Photoch Photobio A. 2021;404:112961. doi:10.1016/j.jphotochem.2020.112961
  • Xue L, He S, Wang X, et al. Construction of two photoluminescent sulfur-containing cadmium(II) coordination polymers with 4-connected topology based on a methyl-3-hydroxy-5-carboxy-2-thiophenecarboxylate ligand. J Sulfur Chem. 2018;39:173–181. doi:10.1080/17415993.2017.1408810
  • Liu J, Luo Z, Pan Y, et al. Recent developments in luminescent coordination polymers: designing strategies, sensing application and theoretical evidences. Coord Chem Rev. 2020;406:213145. doi:10.1016/j.ccr.2019.213145
  • Kan W, Liu B, Yang J, et al. A series of highly connected metal–organic frameworks based on triangular ligands and d10 metals: syntheses, structures, photoluminescence, and photocatalysis. Cryst Growth Des. 2012;12:2288–2298. doi:10.1021/cg2015644
  • Wang X, Zhang M, Yu B, et al. Synthesis, crystal structures, luminescence and catalytic properties of two d10 metal coordination polymers constructed from mixed ligands. J Photoch Photobio A. 2015;139:442–448.
  • Gupta M, Ahmad M, Singh R, et al. Zn(II)/Cd(II) based coordination polymers synthesized from a semi-flexible dicarboxylate ligand and their emission studies. Polyhedron. 2015;101:86–92. doi:10.1016/j.poly.2015.07.056
  • Wang S, Zheng F, Wu M, et al. Hydrothermal synthesis, crystal structures and photoluminescence of a 2D cadmium(II) coordination polymer based on in situ synthesized tetrazole derivative ligand. Inorg Chem Commun. 2012;24:186–189. doi:10.1016/j.inoche.2012.07.006
  • Gong W, Ren Z, Li H, et al. Cadmium(II) coordination polymers of 4-Pyr-poly-2-ene and carboxylates: construction, structure, and photochemical double [2+2] cycloaddition and luminescent sensing of nitroaromatics and mercury(II) ions. Cryst Growth Des. 2017;17:870–881. doi:10.1021/acs.cgd.6b01728
  • Allendorf M, Bauer C, Bhakta R, et al. Luminescent metal–organic frameworks. Chem Soc Rev. 2009;38:1330–1352. doi:10.1039/b802352m
  • Mandal S, Saha R, Saha M, et al. Synthesis, crystal structure, spectral characterization and photoluminescence property of three Cd(II) complexes with a pyrazole based Schiff-base ligand. J Mol Struct. 2016;1110:11–18. doi:10.1016/j.molstruc.2016.01.020
  • Zahedi M, Shaabani B, Englert U, et al. Cd (II)coordination polymers based on expanded N, Cd(II) coordination polymers based on expanded N,N′-heteroaromatic donor ligands. Polyhedron. 2017;133:110–118. doi:10.1016/j.poly.2017.05.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.