356
Views
13
CrossRef citations to date
0
Altmetric
Review

Drug, delivery and devices for diabetic retinopathy (3Ds in DR)

, , , , , , & show all
Pages 1625-1637 | Received 12 Jan 2016, Accepted 09 May 2016, Published online: 30 May 2016

References

  • Aiello LM. Perspectives on diabetic retinopathy. Am J Ophthalmol. 2003 Jul;136(1):122–135.
  • Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res. 2013 May;34:19–48.
  • Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care. 2003 Sep;26(9):2653–2664.
  • Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res. 2007;2007:95103.
  • Meyer CH. Current treatment approaches in diabetic macular edema. Ophthalmologica. 2007;221(2):118–131.
  • Villar G, Garcia Y, Goicolea I, et al. Determinants of development of microalbuminuria in normotensive patients with type 1 and type 2 diabetes. Diabetes Metab. 1999 Sep;25(3):246–254.
  • Reaven PD, Emanuele N, Moritz T, et al. Proliferative diabetic retinopathy in type 2 diabetes is related to coronary artery calcium in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care. 2008 May;31(5):952–957.
  • Kleinman ME, Baffi JZ, Ambati J. The multifactorial nature of retinal vascular disease. Ophthalmologica. 2010;224 Suppl 1:16–24.
  • Antcliff RJ, Marshall J. The pathogenesis of edema in diabetic maculopathy. Semin Ophthalmol. 1999 Dec;14(4):223–232.
  • Dahrouj M, Desjardins DM, Liu Y, et al. Receptor mediated disruption of retinal pigment epithelium function in acute glycated-albumin exposure. Exp Eye Res. 2015;137:50–56.
  • Miyamoto N, De Kozak Y, Jeanny JC, et al. Placental growth factor-1 and epithelial haemato-retinal barrier breakdown: potential implication in the pathogenesis of diabetic retinopathy. Diabetologia. 2007;50:461–470.
  • Shams N, Ianchulev T. Role of vascular endothelial growth factor in ocular angiogenesis. Ophthalmol Clin North Am. 2006 Sep;19(3):335–344.
  • Tolentino MJ, Miller JW, Gragoudas ES, et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology. 1996 Nov;103(11):1820–1828.
  • Funatsu H, Yamashita H, Noma H, et al. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol. 2002 Jan;133(1):70–77.
  • Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994 Dec 1;331(22):1480–1487.
  • Campochiaro PA. Retinal and choroidal neovascularization. J Cell Physiol. 2000 Sep;184(3):301–310.
  • Dejana E, Spagnuolo R, Bazzoni G. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb Haemost. 2001 Jul;86(1):308–315.
  • Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011 Sep;30(5):343–358.
  • Russo A, Costagliola C, Delcassi L, et al. Topical nonsteroidal anti-inflammatory drugs for macular edema. Mediators Inflamm. 2013;2013:476525.
  • Rechtman E, Harris A, Garzozi HJ, et al. Pharmacologic therapies for diabetic retinopathy and diabetic macular edema. Clin Ophthalmol. 2007 Dec;1(4):383–391.
  • Singh R, Ramasamy K, Abraham C, et al. Diabetic retinopathy: an update. Indian J Ophthalmol. 2008 May-Jun;56(3):178–188.
  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006 Nov 15;58(11):1131–1135.
  • Hughes PM, Olejnik O, Chang-Lin JE, et al. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005 Dec 13;57(14):2010–2032.
  • Kern TS, Miller CM, Du Y, et al. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes. 2007 Feb;56(2):373–379.
  • Shimura M, Yasuda K. Topical bromfenac reduces the frequency of intravitreal bevacizumab in patients with branch retinal vein occlusion. Br J Ophthalmol. 2015 Feb;99(2):215–219.
  • Klettner A, Roider J. Comparison of bevacizumab, ranibizumab, and pegaptanib in vitro: efficiency and possible additional pathways. Invest Ophthalmol Vis Sci. 2008 Oct;49(10):4523–4527.
  • Chen JJ, Ebmeier SE, Sutherland WM, et al. Potential penetration of topical ranibizumab (Lucentis) in the rabbit eye. Eye (Lond). 2011 Nov;25(11):1504–1511.
  • Bandello F, Preziosa C, Querques G, et al. Update of intravitreal steroids for the treatment of diabetic macular edema. Ophthalmic Res. 2014;52(2):89–96.
  • Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006 Nov 15;58(11):1164–1181.
  • Nomoto H, Shiraga F, Kuno N, et al. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4807–4813.
  • Zhao Y, Lei W. [Retina penetration of subconjunctival ranibizumab injection in the rabbit eye]. Zhonghua Yan Ke Za Zhi. 2015 May;51(5):356–359.
  • Ferrara N, Damico L, Shams N, et al. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina. 2006 Oct;26(8):859–870.
  • Shen L, Mao J, Chen Y, et al. Transscleral permeation of subtenon triamcinolone in different vitreoretinal diseases. Ophthalmology. 2015 Mar;122(3):649–651.
  • Paul M, Vieillard V, Roumi E, et al. Long-term stability of bevacizumab repackaged in 1mL polypropylene syringes for intravitreal administration. Ann Pharm Fr. 2012 May;70(3):139–154.
  • Signorello L, Pucciarelli S, Bonacucina G, et al. Quantification, microbial contamination, physico-chemical stability of repackaged bevacizumab stored under different conditions. Curr Pharm Biotechnol. 2014;15(2):113–119.
  • Yannuzzi NA, Klufas MA, Quach L, et al. Evaluation of compounded bevacizumab prepared for intravitreal injection. JAMA Ophthalmol. 2015 Jan;133(1):32–39.
  • Wang Y, Fei D, Vanderlaan M, et al. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis. 2004;7(4):335–345.
  • Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012 Apr;119(4):789–801.
  • Do DV, Schmidt-Erfurth U, Gonzalez VH, et al. The DA VINCI Study: phase 2 primary results of VEGF trap-eye in patients with diabetic macular edema. Ophthalmology. 2011 Sep;118(9):1819–1826.
  • Weidle UH, Schneider B, Georges G, et al. Genetically engineered fusion proteins for treatment of cancer. Cancer Genomics Proteomics. 2012 Nov;9(6):357–372.
  • Struble CTA, Gerometta M, Kreuger M, et al. Ocular distribution and pharmacokinetics of 125I-OPT302 and 125I-Aflibercept (EYLEA) following intravitreal administration to pigmented rabbits. Acta Ophthalmologica. 2014;92(s253).
  • Gariano RF, Gardner TW. Retinal angiogenesis in development and disease. Nature. 2005 Dec 15;438(7070):960–966.
  • Kern TS, Engerman RL. Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes. 2001 Jul;50(7):1636–1642.
  • Stitt A, Gardiner TA, Alderson NL, et al. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes. 2002 Sep;51(9):2826–2832.
  • Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999 Jul 9;285(5425):245–248.
  • Bhatwadekar A, Glenn JV, Figarola JL, et al. A new advanced glycation inhibitor, LR-90, prevents experimental diabetic retinopathy in rats. Br J Ophthalmol. 2008 Apr;92(4):545–547.
  • A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Sorbinil Retinopathy Trial Research Group. Arch Ophthalmol. 1990 Sep;108(9):1234–1244.
  • Sun W, Oates PJ, Coutcher JB, et al. A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy. Diabetes. 2006 Oct;55(10):2757–2762.
  • Galvez MI. Rubosixtaurin and other PKC inhibitors in diabetic retinopathy and macular edema. Review. Curr Diabetes Rev. 2009 Feb;5(1):14–17.
  • Campochiaro PA, Group CPS. Reduction of diabetic macular edema by oral administration of the kinase inhibitor PKC412. Invest Ophthalmol Vis Sci. 2004 Mar;45(3):922–931.
  • Gupta N, Mansoor S, Sharma A, et al. Diabetic retinopathy and VEGF. Open Ophthalmol J. 2013;7:4–10.
  • Writing Committee for the Diabetic Retinopathy Clinical, Research N, Gross JG, Glassman AR, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2015 Nov 24;314(20):2137–2146.
  • Papadopoulos N, Martin J, Ruan Q, et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis. 2012 Jun;15(2):171–185.
  • Diabetic Retinopathy Clinical Research N, Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015 Mar 26;372(13):1193–1203.
  • NCT02194634. Safety and efficacy study of conbercept in diabetic macular edema (DME) (sailing). [ cited 2015 Dec 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT02194634.
  • Wu Z, Zhou P, Li X, et al. Structural characterization of a recombinant fusion protein by instrumental analysis and molecular modeling. PLoS One. 2013;8(3):e57642.
  • Struble C, Tester A, Gerometta M, et al. Ocular distribution and pharmacokinetics of 125I-OPT302 and 125I-Aflibercept (EYLEA) following intravitreal administration to pigmented rabbits. Acta Ophthalmologica. 2014;92:0–0.
  • Stahl A, Stumpp MT, Schlegel A, et al. Highly potent VEGF-A-antagonistic DARPins as anti-angiogenic agents for topical and intravitreal applications. Angiogenesis. 2013 Jan;16(1):101–111.
  • Binz HK, Amstutz P, Kohl A, et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol. 2004 May;22(5):575–582.
  • Yu W, Bai Y, Han N, et al. Inhibition of pathological retinal neovascularization by semaphorin 3A. Mol Vis. 2013;19:1397–1405.
  • Eichmann A, Le Noble F, Autiero M, et al. Guidance of vascular and neural network formation. Curr Opin Neurobiol. 2005 Feb;15(1):108–115.
  • Melani M, Weinstein BM. Common factors regulating patterning of the nervous and vascular systems. Annu Rev Cell Dev Biol. 2010;26:639–665.
  • Agrawal NK, Kant S. Targeting inflammation in diabetes: newer therapeutic options. World J Diabetes. 2014 Oct 15;5(5):697–710.
  • Dedania VS, Bakri SJ. Novel pharmacotherapies in diabetic retinopathy. Middle East Afr J Ophthalmol. 2015 Apr-Jun;22(2):164–173.
  • Nauck M, Roth M, Tamm M, et al. Induction of vascular endothelial growth factor by platelet-activating factor and platelet-derived growth factor is downregulated by corticosteroids. Am J Respir Cell Mol Biol. 1997 Apr;16(4):398–406.
  • Nauck M, Karakiulakis G, Perruchoud AP, et al. Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur J Pharmacol. 1998 Jan 12;341(2–3):309–315.
  • Schwartz SG, Flynn HW Jr., Scott IU. Emerging drugs for diabetic macular edema. Expert Opin Emerg Drugs. 2014 Sep;19(3):397–405.
  • Diabetic Retinopathy Clinical Research N, Beck RW, Edwards AR, Aeillo LP, et al. Three-year follow-up of a randomized trial comparing focal/grid photocoagulation and intravitreal triamcinolone for diabetic macular edema. Arch Ophthalmol. 2009 Mar;127(3):245–251.
  • Audren F, Erginay A, Haouchine B, et al. Intravitreal triamcinolone acetonide for diffuse diabetic macular oedema: 6-month results of a prospective controlled trial. Acta Ophthalmol Scand. 2006 Oct;84(5):624–630.
  • Massin P, Audren F, Haouchine B, et al. Intravitreal triamcinolone acetonide for diabetic diffuse macular edema: preliminary results of a prospective controlled trial. Ophthalmology. 2004;111(2):218–224; discussion 224–215.
  • Sutter FK, Simpson JM, Gillies MC. Intravitreal triamcinolone for diabetic macular edema that persists after laser treatment: three-month efficacy and safety results of a prospective, randomized, double-masked, placebo-controlled clinical trial. Ophthalmology. 2004 Nov;111(11):2044–2049.
  • Diabetic Retinopathy Clinical Research Network, Googe J, Brucker AJ, et al. Randomized trial evaluating short-term effects of intravitreal ranibizumab or triamcinolone acetonide on macular edema after focal/grid laser for diabetic macular edema in eyes also receiving panretinal photocoagulation. Retina. 2011 Jun;31(6):1009–1027.
  • Aukunuru JV, Sunkara G, Ayalasomayajula SP, et al. A biodegradable injectable implant sustains systemic and ocular delivery of an aldose reductase inhibitor and ameliorates biochemical changes in a galactose-fed rat model for diabetic complications. Pharm Res. 2002 Mar;19(3):278–285.
  • Xu X, Weng Y, Xu L, et al. Sustained release of Avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Int J Biol Macromol. 2013;60:272–276.
  • Cardillo JA, Souza-Filho AA, Oliveira AG. Intravitreal Bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulnes for the treatment of diabetic macular edema. Arch Soc Esp Oftalmol. 2006 Dec;81(12):675–677, 679–681.
  • Pan CK, Durairaj C, Kompella UB, et al. Comparison of long-acting bevacizumab formulations in the treatment of choroidal neovascularization in a rat model. J Ocul Pharmacol Ther. 2011 Jun;27(3):219–224.
  • Li F, Hurley B, Liu Y, et al. Controlled release of bevacizumab through nanospheres for extended treatment of age-related macular degeneration. Open Ophthalmol J. 2012;6:54–58.
  • Varshochian R, Jeddi-Tehrani M, Mahmoudi AR, et al. The protective effect of albumin on bevacizumab activity and stability in PLGA nanoparticles intended for retinal and choroidal neovascularization treatments. Eur J Pharm Sci. 2013 Nov 20;50(3–4):341–352.
  • Ryu M, Nakazawa T, Akagi T, et al. Suppression of phagocytic cells in retinal disorders using amphiphilic poly(γ-glutamic acid) nanoparticles containing dexamethasone. J Control Release. 2011 Apr 10;151(1):65–73.
  • Tanito M, Hara K, Takai Y, et al. Topical dexamethasone-cyclodextrin microparticle eye drops for diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52(11):7944–7948.
  • Jóhannesson G, Moya-Ortega MD, Ásgrímsdóttir GM, et al. Kinetics of γ-cyclodextrin nanoparticle suspension eye drops in tear fluid. Acta Ophthalmol. 2014 Sep;92(6):550–556.
  • Ohira A, Hara K, Johannesson G, et al. Topical dexamethasone gamma-cyclodextrin nanoparticle eye drops increase visual acuity and decrease macular thickness in diabetic macular oedema. Acta Ophthalmol. 2015 Nov;93(7):610–615.
  • NCT01523314. Topical dexamethasone - cyclodextrin microparticle eye drops for diabetic macular edema. [ cited 2015 Dec 1]. Available from: https://clinicaltrials.gov/ct2/results?term=NCT01523314&Search=Search.
  • Gupta SK, Velpandian T, Dhingra N, et al. Intravitreal pharmacokinetics of plain and liposome-entrapped fluconazole in rabbit eyes. J Ocul Pharmacol Ther. 2000 Dec;16(6):511–518.
  • Abrishami M, Zarei-Ghanavati S, Soroush D, et al. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina. 2009 May;29(5):699–703.
  • Davis BM, Normando EM, Guo L, et al. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small. 2014 Apr 24;10(8):1575–1584.
  • Kuno N, Fujii S. Recent advances in ocular drug delivery systems. Polymers. 2011;3(4):193–221.
  • Daull P, Paterson CA, Kuppermann BD, et al. A preliminary evaluation of dexamethasone palmitate emulsion: a novel intravitreal sustained delivery of corticosteroid for treatment of macular edema. J Ocul Pharmacol Ther. 2013 Mar;29(2):258–269.
  • Civiale C, Licciardi M, Cavallaro G, et al. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int J Pharm. 2009 Aug 13;378(1–2):177–186.
  • Pepić I, Hafner A, Lovrić J, et al. A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J Pharm Sci. 2010 Oct;99(10):4317–4325.
  • Rafie F, Javadzadeh Y, Javadzadeh AR, et al. In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res. 2010 Dec;35(12):1081–1089.
  • Yu Y, Ying C. Development of injectable hydrogel based on catalyst-free click chemistry for controlled release of macromolecules - a formulation study for Avastin. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci. 2014;55:474.
  • Kang Derwent JJ, Mieler WF. Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc. 2008;106:206–213; discussion 213–204.
  • Wang CH, Hwang YS, Chiang PR, et al. Extended release of bevacizumab by thermosensitive biodegradable and biocompatible hydrogel. Biomacromolecules. 2012 Jan 9;13(1):40–48.
  • Tyagi P, Barros M, Stansbury JW, et al. Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Mol Pharm. 2013 Aug 5;10(8):2858–2867.
  • Xu J, Wang Y, Li Y, et al. Inhibitory efficacy of intravitreal dexamethasone acetate-loaded PLGA nanoparticles on choroidal neovascularization in a laser-induced rat model. J Ocul Pharmacol Ther. 2007 Dec;23(6):527–540.
  • Boddu SH, Jwala J, Vaishya R, et al. Novel nanoparticulate gel formulations of steroids for the treatment of macular edema. J Ocul Pharmacol Ther. 2010;26 (1):37–48.
  • Loftsson T, Hreinsdóttir D, Stefánsson E. Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: aqueous dexamethasone eye drops. J Pharm Pharmacol. 2007 May;59(5):629–635.
  • Ruiz-Moreno JM, Montero JA, Arias L, et al. Photodynamic therapy in subfoveal and juxtafoveal idiopathic and postinflammatory choroidal neovascularization. Acta Ophthalmol Scand. 2006 Dec;84(6):743–748.
  • Bochot A, Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J Control Release. 2012 Jul 20;161(2):628–634.
  • Yilmaz T, Cordero-Coma M, Lavaque AJ, et al. Triamcinolone and intraocular sustained-release delivery systems in diabetic retinopathy. Curr Pharm Biotechnol. 2011 Mar 1;12(3):337–346.
  • Campochiaro PA, Hafiz G, Shah SM, et al. Sustained ocular delivery of fluocinolone acetonide by an intravitreal insert. Ophthalmology. 2011 Jul;117(7):1393–1399e1393.
  • Iluvien Approval History. 2014 [cited 2015 Nov 30]. Available from: http://www.drugs.com/history/iluvien.html.
  • NCT00692614. A study of MK0140 in diabetic patients with macular edema (0140-001) a study of MK0140 in diabetic patients with macular edema (0140-001). [ cited 2015 Dec 1]. Available from: https://clinicaltrials.gov/ct2/results?term=NCT00692614&Search=Search.
  • Ozurdex approval history. 2014 [cited 2015 Nov 30]. Available from: http://www.drugs.com/history/ozurdex.html.
  • NCT01175395. 20089 TA+lucentis combo intravitreal injections for treatment of neovascular age-related macular degeneration (AMD) (20089/Combo). Available from: https://clinicaltrials.gov/ct2/show/NCT01175395?term=NCT01175395&rank=1.
  • Chen H. Recent developments in ocular drug delivery. J Drug Target. 2015 Aug;23(7–8):597–604.
  • Avery RL, Saati S, Journey M, et al. A novel implantable, refillable pump for intraocular drug delivery. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci. 2010;51:3799.
  • Dalton M. Drug-delivery micropump for chronic retina disorders. 2014 [cited 2015 Dec 2]. Available from: http://ophthalmologytimes.modernmedicine.com/ophthalmologytimes/news/drug-delivery-micropump-chronic-retina-disorders?page=full.
  • RUBIO RG. Good early results seen with anti-VEGF refillable port delivery system. Genentech. 2013 [cited 2015 Dec 4]. Available from: http://www.healio.com/ophthalmology/retina-vitreous/news/print/osn-retina/%7B4df622f8-54f7-4895-a182-a1fbbe6902b4%7D/good-early-results-seen-with-anti-vegf-refillable-port-delivery-system.
  • NCT02510794. Study of the efficacy and safety of the ranibizumab port delivery system for sustained delivery of ranibizumab in participants with subfoveal neovascular age-related macular degeneration (LADDER). [ cited 2016 Mar 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT02510794?term=NCT02510794&rank=1.
  • Shah SS, Denham LV, Elison JR, et al. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev Ophthalmol. 2010 Feb 1;5(1):75–93.
  • Khurana RN. How to manage a migrating dexamethasone intravitreal implant review of ophthalmology. 2015 [cited 2016 Mar 31]. Available from: http://www.retina-specialist.com/article/how-to-manage-a-migrating-dexamethasone-intravitreal-implant.
  • Implantation and Removal Procedures. Retinal physician. 2011 [cited 2016 Mar 31]. Available from: http://www.retinalphysician.com/articleviewer.aspx?articleID=105433.
  • Haghjou N, Soheilian M, Abdekhodaie MJ. Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalmic Vis Res. 2011 Oct;6(4):317–329.
  • Kane FE, Burdan J, Cutino A, et al. Iluvien: a new sustained delivery technology for posterior eye disease. Expert Opin Drug Deliv. 2008 Sep;5(9):1039–1046.
  • Campochiaro PA, Brown DM, Pearson A, et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology. 2011 Apr;118(4):626–635e622.
  • Campochiaro PA, Brown DM, Pearson A, et al. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology. 2012 Oct;119(10):2125–2132.
  • Pearson PA, Comstock TL, Ip M, et al. Fluocinolone acetonide intravitreal implant for diabetic macular edema: a 3-year multicenter, randomized, controlled clinical trial. Ophthalmology. 2011 Aug;118(8):1580–1587.
  • Kompella UB, Kadam RS, Lee VH. Recent advances in ophthalmic drug delivery. Ther Deliv. 2010 Sep;1(3):435–456.
  • Dugel PU, Bandello F, Loewenstein A. Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol. 2015;9:1321–1335.
  • Boyer DS, Yoon YH, Belfort R Jr., et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014 Oct;121(10):1904–1914.
  • Kim S, Kim JH, Jeon O, et al. Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm. 2009 Mar;71(3):420–430.
  • Kim YM, Lim JO, Kim HK, et al. A novel design of one-side coated biodegradable intrascleral implant for the sustained release of triamcinolone acetonide. Eur J Pharm Biopharm. 2008 Sep;70(1):179–186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.