1,268
Views
235
CrossRef citations to date
0
Altmetric
Review

Albumin nanostructures as advanced drug delivery systems

, , , , , , , & show all
Pages 1609-1623 | Received 08 Jan 2016, Accepted 18 May 2016, Published online: 03 Jun 2016

References

  • Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–2417.
  • Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013;65(1):104–120.
  • Karimi M, Solati N, Amiri M, et al. Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle. Expert Opin Drug Deliv. 2015;12(7):1–17.
  • Karimi M, Mirshekari H, MoosaviBasri M, et al. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv Drug Deliv Rev. 2016. doi:10.1016/j.addr.2016.03.003. [Epub ahead of print]
  • Nicolas J, Mura S, Brambilla D, et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42(3):1147–1235.
  • Karimi M, Solati N, Ghasemi A, et al. Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv. 2015;12(7):1–17.
  • Couvreur P. Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev. 2013;65(1):21–23.
  • Karimi M, Ghasemi A, Zangabad PS, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–1501.
  • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Controlled Release. 2008;132(3):171–183.
  • Yewale C, Baradia D, Vhora I, et al. Proteins: emerging carrier for delivery of cancer therapeutics. Expert Opin Drug Deliv. 2013;10(10):1429–1448.
  • Peters T. Serum albumin. Adv Protein Chem. 1985;37:161–245.
  • Han J, Wang Q, Zhang Z, et al. Cationic bovine serum albumin based self‐assembled nanoparticles as siRNA delivery vector for treating lung metastatic cancer. Small. 2014;10(3):524–535.
  • Lee HJ, Park HH, Kim JA, et al. Enzyme delivery using the 30Kc19 protein and human serum albumin nanoparticles. Biomaterials. 2014;35(5):1696–1704.
  • Wolfrum C, Shi S, Jayaprakash KN, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 2007;25(10):1149–1157.
  • Ren K, Dusad A, Dong R, et al. Albumin as a delivery carrier for rheumatoid arthritis. J Nanomed Nanotechol. 2013;4(176):2.
  • Kratz F, Elsadek B. Clinical impact of serum proteins on drug delivery. J Controlled Release. 2012;161(2):429–445.
  • Karimi M, Avci P, Mobasseri R, et al. The novel albumin–chitosan core–shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation. J Nanopart Res. 2013;15(5):1–14.
  • Kouchakzadeh H, Shojaosadati SA, Shokri F. Efficient loading and entrapment of tamoxifen in human serum albumin based nanoparticulate delivery system by a modified desolvation technique. Chem Eng Res Des. 2014;92(9):1681–1692.
  • Misak HE, Asmatulu R, Gopu JS, et al. Albumin‐based nanocomposite spheres for advanced drug delivery systems. Biotechnol J. 2014;9(1):163–170.
  • Steinhauser I, Spänkuch B, Strebhardt K, et al. Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials. 2006;27(28):4975–4983.
  • Kouchakzadeh H, Safavi MS, Shojaosadati SA. Chapter four-efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Adv Protein Chem Struct Biol. 2015;98:121–143.
  • Wartlick H, Michaelis K, Balthasar S, et al. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J Drug Target. 2004;12(7):461–471.
  • Li C, Zhang D, Guo H, et al. Preparation and characterization of galactosylated bovine serum albumin nanoparticles for liver-targeted delivery of oridonin. Int J Pharm. 2013;448(1):79–86.
  • Mackowiak SA, Schmidt A, Weiss V, et al. Targeted drug delivery in cancer cells with red-light photoactivated mesoporous silica nanoparticles. Nano Lett. 2013;13(6):2576–2583.
  • Zhang G, Zeng X, Li P. Nanomaterials in cancer-therapy drug delivery system. J Biomed Nanotechnol. 2013;9(5):741–750.
  • Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev. 2008;60(8):876–885.
  • Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother. 2006;7:1041–1053.
  • He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature. 1992;358:209–215.
  • Zsila F. Subdomain IB is the third major drug binding region of human serum albumin: toward the three-sites model. Mol Pharm. 2013;10(5):1668–1682.
  • Narazaki R, Maruyama T, Otagiri M. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques. Biochimica Biophysica Acta (BBA)-Protein Struct Mol Enzymol. 1997;1338(2):275–281.
  • Carter DC, He X-M, Munson SH, et al. Three-dimensional structure of human serum albumin. Science. 1989;244(4909):1195–1198.
  • Z-M W, Ho JX, Ruble JR, et al. Structural studies of several clinically important oncology drugs in complex with human serum albumin. Biochimica Et Biophysica Acta (Bba)-Gensubj. 2013;1830(12):5356–5374.
  • Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Controlled Release. 2012;157(2):168–182.
  • Divsalar A, Saboury AA, Nabiuni M, et al. Characterization and side effect analysis of a newly designed nanoemulsion targeting human serum albumin for drug delivery. Colloids Surf B. 2012;98:80–84.
  • Zheng Y-R, Suntharalingam K, Johnstone TC, et al. Pt (IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J Am Chem Soc. 2014;136(24):8790–8798.
  • Chuang VTG, Otagiri M. Stereoselective binding of human serum albumin. Chirality. 2006;18(3):159–166.
  • Choi SH, Byeon HJ, Choi JS, et al. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J Controlled Release. 2015;197:199–207.
  • Bae S, Ma K, Kim TH, et al. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials. 2012;33(5):1536–1546.
  • Dosio F, Arpicco S, Brusa P, et al. Poly (ethylene glycol)–human serum albumin–paclitaxel conjugates: preparation, characterization and pharmacokinetics. J Controlled Release. 2001;76(1):107–117.
  • Wu S, Huang X, Du X. Glucose‐and pH‐responsive controlled release of cargo from protein‐gated carbohydrate‐functionalized mesoporous silica nanocontainers. Angewandte Chemie. 2013;125(21):5690–5694.
  • Zhao L, Zhou Y, Gao Y, et al. Bovine serum albumin nanoparticles for delivery of tacrolimus to reduce its kidney uptake and functional nephrotoxicity. Int J Pharm. 2015;483(1):180–187.
  • Massolini G, Aubry A-F, Mcgann A, et al. Determination of the magnitude and enantioselectivity of ligand binding to rat and rabbit serum albumins using immobilized-protein high performance liquid chromatography stationary phases. Biochem Pharmacol. 1993;46(7):1285–1293.
  • Huntington JA, Stein PE. Structure and properties of ovalbumin. J Chromatogr B Biomed Sci Appl. 2001;756(1):189–198.
  • Savadkoohi S, Bannikova A, Mantri N, et al. Structural properties of condensed ovalbumin systems following application of high pressure. Food Hydrocoll. 2014;53:104–114.
  • Niu F, Dong Y, Shen F, et al. Phase separation behavior and structural analysis of ovalbumin–gum arabic complex coacervation. Food Hydrocoll. 2014;43:1–7.
  • Flanary S, Hoffman AS, Stayton PS. Antigen delivery with poly (propylacrylic acid) conjugation enhances MHC-1 presentation and T-cell activation. Bioconjug Chem. 2009;20(2):241–248.
  • Carter DC, Ho JX. Structure of serum albumin. Adv Protein Chem. 1994;45(45):153–203.
  • Kratochwil NA, Huber W, Müller F, et al. Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol. 2002;64(9):1355–1374.
  • Kosa T, Nishi K, Maruyama T, et al. Structural and ligand‐binding properties of serum albumin species interacting with a biomembrane interface. J Pharm Sci. 2007;96(11):3117–3124.
  • Dufour C, Dangles O. Flavonoid–serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochimica Et Biophysica Acta (Bba)-Gensubj. 2005;1721(1):164–173.
  • Carter D, Ho J, Wang Z Albumin binding sites for evaluating drug interactions and methods of evaluating or designing drugs based on their albumin binding properties. Google Patents. 2004.
  • Carter DC. Crystallographic survey of albumin drug interaction and preliminary applications in cancer chemotherapy. Burger’s Med Chem Drug Discov. 2010;437–468. doi:10.1002/0471266949.bmc166
  • Panjehshahin MR, Yates MS, Bowmer CJ. A comparison of drug binding sites on mammalian albumins. Biochem Pharmacol. 1992;44(5):873–879.
  • Morávek L, Kostka V, Saber M, et al. Peptides isolated from tryptic and chymotryptic digest of fragment CB6 (Pro) of human plasma albumin. Collect Czechoslov Chem Commun. 1975;40(4):1103–1111.
  • Anand U, Mukherjee S. Binding, unfolding and refolding dynamics of serum albumins. Biochimica Et Biophysica Acta (Bba)-Gensubj. 2013;1830(12):5394–5404.
  • Weber C, Coester C, Kreuter J, et al. Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm. 2000;194(1):91–102.
  • Sadeghi R, Moosavi-Movahedi A, Emam-jomeh Z, et al. The effect of different desolvating agents on BSA nanoparticle properties and encapsulation of curcumin. J Nanoparticle Res. 2014;16(9):1–14.
  • Yedomon B, Fessi H, Charcosset C. Preparation of Bovine Serum Albumin (BSA) nanoparticles by desolvation using a membrane contactor: A new tool for large scale production. Eur J Pharmaceutics Biopharmaceutics. 2013;85(3):398–405.
  • Li QY, Liu C, Zhao XH, et al. Preparation, characterization and targeting of micronized 10-hydroxycamptothecin-loaded folate-conjugated human serum albumin nanoparticles to cancer cells. Int J Nanomedicine. 2011;6:397–405.
  • Ghosh P, Roy AS, Chaudhury S, et al. Preparation of albumin based nanoparticles for delivery of fisetin and evaluation of its cytotoxic activity. Int J Biol Macromol. 2016;86:408–417.
  • Wan X, Zheng X, Pang X, et al. The potential use of lapatinib-loaded human serum albumin nanoparticles in the treatment of triple-negative breast cancer. Int J Pharm. 2015;484(1):16–28.
  • Battogtokh G, Kang JH, Ko YT. Long-circulating self-assembled cholesteryl albumin nanoparticles enhance tumor accumulation of hydrophobic anticancer drug. Eur J Pharmaceutics Biopharmaceutics. 2015;96:96–105.
  • Chen B, He X-Y, Yi X-Q, et al. Dual-peptide-functionalized albumin-based nanoparticles with pH-dependent self-assembly behavior for drug delivery. ACS Appl Mater Interfaces. 2015;7(28):15148–15153.
  • Martín M. nab-Paclitaxel dose and schedule in breast cancer. Breast Cancer Res. 2015;17(1):1–10.
  • Husain K, Sebti SM, Malafa MP. Delta-tocotrienol potentiates the antitumor activity of standard chemotherapy with gemcitabine and abraxane in metastatic pancreatic cancer. Cancer Res. 2014;74(19 Supplement):1699–99.
  • Lam P-L, Kok S-L, Gambari R, et al. Evaluation of berberine/bovine serum albumin nanoparticles for liver fibrosis therapy. Green Chem. 2015;17(3):1640–1646.
  • Steinhauser IM, Langer K, Strebhardt KM, et al. Effect of trastuzumab-modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation. Biomaterials. 2008;29(29):4022–4028.
  • Madhav NS, Kala S. Review on microparticulate drug delivery system. Int J PharmTech Res. 2011;3:1242–1254.
  • Hougeir FG, Kircik L. A review of delivery systems in cosmetics. Dermatol Ther. 2012;25(3):234–237.
  • Gayakwad SG, Bejugam NK, Akhavein N, et al. Formulation and in vitro characterization of spray-dried antisense oligonucleotide to NF-κ B encapsulated albumin microspheres. J Microencapsul. 2009;26(8):692–700.
  • Torrado S, Torrado JJ, Cadórniga R. Topical application of albumin microspheres containing vitamin A drug release and availability. Int J Pharm. 1992;86(2):147–152.
  • Lee H-Y, Mohammed KA, Goldberg EP, et al. Arginine-conjugated albumin microspheres inhibits proliferation and migration in lung cancer cells. Am J Cancer Res. 2013;3(3):266.
  • Stride E, Edirisinghe M. Novel microbubble preparation technologies. Soft Matter. 2008;4(12):2350–2359.
  • Dang S-P, Wang R-X, Zhang Y, et al. A novel transfection method for eukaryotic cells using polyethylenimine coated albumin microbubbles. Plasmid. 2011;66(1):19–25.
  • Chen JL, Dhanaliwala AH, Dixon AJ, et al. Synthesis of albumin microbubbles using a microfluidic device for real-time imaging and therapeutics. In: Ultrasonics Symposium (IUS), 2013 IEEE International. IEEE. 2013;40(2):400–409.
  • Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov. 2004;3(6):527–533.
  • Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev. 2008;60(10):1153–1166.
  • Oettinger CW, D’souza MJ. Microencapsulated drug delivery: a new approach to pro-inflammatory cytokine inhibition. J Microencapsul. 2012;29(5):455–462.
  • Rollett A, Reiter T, Nogueira P, et al. Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. Int J Pharm. 2012;427(2):460–466.
  • Jung SH, Kim SK, Jung SH, et al. Increased stability in plasma and enhanced cellular uptake of thermally denatured albumin-coated liposomes. Colloids Surf B. 2010;76(2):434–440.
  • Weecharangsan W, Lee RJ. Growth inhibition and chemosensitization of human carcinoma cells by human serum albumin-coated liposomal antisense oligodeoxyribonucleotide against bcl-2. Drug Deliv. 2012;19(6):292–297.
  • Patil GV. Biopolymer albumin for diagnosis and in drug delivery. Drug Dev Res. 2003;58(3):219–247.
  • Zucchi R, Danesi R. Cardiac toxicity of antineoplastic anthracyclines. Curr Med Chem Anticancer Agents. 2003;3:151–171.
  • Pereverzeva E, Treschalin I, Bodyagin D, et al. Influence of the formulation on the tolerance profile of nanoparticle-bound doxorubicin in healthy rats: focus on cardio- and testicular toxicity. Int J Pharm. 2007;337(1–2):346–356.
  • Kouchakzadeh H, Shojaosadati SA, Maghsoudi A, et al. Optimization of PEGylation conditions for BSA nanoparticles using response surface methodology. AAPS PharmSciTech. 2010;11(3):1206–1211.
  • Lin W, Garnett MC, Davis SS, et al. Preparation and characterisation of rose Bengal-loaded surface-modified albumin nanoparticles. J Controlled Release. 2001;71(1):117–126.
  • Zhang SF, Kucharski C, Doschak MR, et al. Polyethylenimine-PEG coated albumin nanoparticles for BMP-2 delivery. Biomaterials. 2010;31(5):952–963.
  • Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev. 2012;64:342–352.
  • Zhao DM, Zhao XH, Zu YG, et al. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine. 2010;5:669–677.
  • Shen ZY, Li Y, Kohama K, et al. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacological Res. 2011;63(1):51–58.
  • Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Controlled Release. 2009;137(1):78–86.
  • Kreuter J, Hekmatara T, Dreis S, et al. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Controlled Release. 2007;118(1):54–58.
  • Wagner S, Zensi A, Wien SL, et al. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. Plos One. 2012;7(3):e32568.
  • Michaelis K, Hoffmann MM, Dreis S, et al. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther. 2006;317(3):1246–1253.
  • Anhorn MG, Wagner S, Kreuter J, et al. Specific targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded trastuzumab-modified human serum albumin nanoparticles. Bioconjug Chem. 2008;19(12):2321–2331.
  • Kouchakzadeh H, Shojaosadati SA, Tahmasebi F, et al. Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles. Int J Pharm. 2013;447(1–2):62–69.
  • Löw K, Wacker M, Wagner S, et al. Targeted human serum albumin nanoparticles for specific uptake in EGFR-expressing colon carcinoma cells. Nanomedicine. 2011;7:454–463.
  • Wagner S, Rothweiler F, Anhorn MG, et al. Enhanced drug targeting by attachment of an anti alpha v integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials. 2010;31(8):2388–2398.
  • Vhora I, Patil S, Bhatt P, et al. Chapter one-protein–and peptide–drug conjugates: an emerging drug delivery technology. Adv Protein Chem Struct Biol. 2015;98:1–55.
  • Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochimica Et Biophysica Acta (Bba)-Gensubj. 2013;1830(12):5526–5534.
  • Merodio M, Arnedo A, Renedo MJ, et al. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci. 2001;12(3):251–259.
  • Arnedo A, Irache J, Merodio M, et al. Albumin nanoparticles improved the stability, nuclear accumulation and anticytomegaloviral activity of a phosphodiester oligonucleotide. J Controlled Release. 2004;94(1):217–227.
  • Luppi B, Bigucci F, Corace G, et al. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci. 2011;44(4):559–565.
  • Irache J, Merodio M, Arnedo A, et al. Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev Med Chem. 2005;5(3):293–305.
  • Wilson B, Ambika T, Patel RDK, et al. Nanoparticles based on albumin: preparation, characterization and the use for 5-flurouracil delivery. Int J Biol Macromol. 2012;51(5):874–878.
  • Li F-Q, Su H, Wang J, et al. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int J Pharm. 2008;349(1):274–282.
  • Wilson B, Lavanya Y, Priyadarshini S, et al. Albumin nanoparticles for the delivery of gabapentin: preparation, characterization and pharmacodynamic studies. Int J Pharm. 2014;473(1):73–79.
  • Zhao D, Zhao X, Zu Y, et al. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine. 2010;5:669.
  • Zu Y, Zhang Y, Zhao X, et al. Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folateconjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM). Int J Nanomedicine. 2009;4:321.
  • Dadparvar M, Wagner S, Wien S, et al. HI 6 human serum albumin nanoparticles—development and transport over an in vitro blood–brain barrier model. Toxicol Lett. 2011;206(1):60–66.
  • Das S, Banerjee R, Bellare J. Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomater Artif Organs. 2005;18(2):203–212.
  • Taheri A, Dinarvand R, Atyabi F, et al. Trastuzumab decorated methotrexate–human serum albumin conjugated nanoparticles for targeted delivery to HER2 positive tumor cells. Eur J Pharm Sci. 2012;47(2):331–340.
  • Zhang Y, Ho A, Yue J, et al. Structural basis and anticancer properties of ruthenium-based drug complexed with human serum albumin. Eur J Med Chem. 2014;86:449–455.
  • Xu H-N, Chen H-J, Zheng B-Y, et al. Preparation and sonodynamic activities of water-soluble tetra-α-(3-carboxyphenoxyl) zinc (II) phthalocyanine and its bovine serum albumin conjugate. Ultrason Sonochem. 2015;22:125–131.
  • Martínez A, Iglesias I, Lozano R, et al. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Eval Drug Delivery Syst Carbohydr Polym. 2011;83(3):1311–1321.
  • Yamasaki K, Chuang VTG, Maruyama T, et al. Albumin–drug interaction and its clinical implication. Biochimica Et Biophysica Acta (Bba)-Gensubj. 2013;1830(12):5435–5443.
  • Yang Z, Gong W, Wang Z, et al. A novel drug-polyethylene glycol liquid compound method to prepare 10-hydroxycamptothecin loaded human serum albumin nanoparticle. Int J Pharm. 2015;490(1–2):412–428.
  • Dai L, Li C-X, Liu K-F, et al. Self-assembled serum albumin–poly (l-lactic acid) nanoparticles: a novel nanoparticle platform for drug delivery in cancer. RSC Adv. 2015;5(20):15612–15620.
  • Bhushan B, Dubey P, Kumar SU, et al. Bionanotherapeutics: niclosamide encapsulated albumin nanoparticles as a novel drug delivery system for cancer therapy. RSC Adv. 2015;5(16):12078–12086.
  • Nigam P, Waghmode S, Louis M, et al. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B. 2014;2(21):3190–3195.
  • Woods A, Patel A, Spina D, et al. In vivo biocompatibility, clearance, and biodistribution of albumin vehicles for pulmonary drug delivery. J Controlled Release. 2015;210:1–9.
  • Kufleitner J, Wagner S, Worek F, et al. Adsorption of obidoxime onto human serum albumin nanoparticles: drug loading, particle size and drug release. J Microencapsul. 2010;27(6):506–513.
  • Jana S, Manna S, Nayak AK, et al. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B. 2014;114:36–44.
  • Brambilla D, Le Droumaguet B, Nicolas J, et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomed Nanotechnol Biol Med. 2011;7(5):521–540.
  • Banks WA. Drug delivery to the brain in Alzheimer’s disease: consideration of the blood–brain barrier. Adv Drug Deliv Rev. 2012;64(7):629–639.
  • Llewellyn DJ, Langa KM, Friedland RP, et al. Serum albumin concentration and cognitive impairment. Curr Alzheimer Res. 2010;7(1):91.
  • Algamal M, Milojevic J, Jafari N, et al. Mapping the interactions between the Alzheimer’s A β-peptide and human serum albumin beyond domain resolution. Biophys J. 2013;105(7):1700–1709.
  • Doyle JS, Aspinall E, Liew D, et al. Current and emerging antiviral treatments for hepatitis C infection. Br J Clin Pharmacol. 2013;75(4):931–943.
  • Kratz F. DOXO-EMCH (INNO-206): the first albumin-binding prodrug of doxorubicin to enter clinical trials. Expert Opin Investig Drugs. 2007;16:855–866.
  • Han JH, Oh YK, Kim DS, et al. Enhanced hepatocyte uptake and liver targeting of methotrexate using galactosylated albumin as a carrier. Int J Pharm. 1999;188(1):39–47.
  • Khandelia R, Bhandari S, Pan UN, et al. Gold nanocluster embedded albumin nanoparticles for two‐photon imaging of cancer cells accompanying drug delivery. Small. 2015;11(33):4075–4081.
  • Karimi M, Eslami M, Sahandi‐Zangabad P, et al. pH‐Sensitive stimulus‐responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev. 2016. doi:10.1002/wnan.1389. [Epub ahead of print]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.