1,065
Views
81
CrossRef citations to date
0
Altmetric
Review

Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview

, , &
Pages 1447-1460 | Received 07 Mar 2016, Accepted 18 May 2016, Published online: 03 Jun 2016

References

  • Gelperina S, Kisich K, Iseman MD, et al. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172:1487–1490.
  • Labhasetwar V, Song C, Levy RJ. Nanoparticle drug delivery system for restenosis. Adv Drug Deliv Rev. 1997;24:63–85.
  • Mohanraj VJ, Chen Y. Nanoparticles – a review. Trop J Pharm Res. 2006;5:561–573.
  • Vila A, Sanchez A, Tobio M, et al. Design of biodegradable particles for protein delivery. J Control Release. 2002;78:15–24.
  • Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release. 2003;86:33–48.
  • Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385:113–142.
  • Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–223.
  • Scholes PD, Coombesa AGA, Illurn L, et al. The preparation of sub-200 nm poly (lactide-co-glycolide) microspheres for site-specific drug delivery. J Control Release. 1993;25:145–153.
  • Allémann E, Gurny R, Doelker E. Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. Int J Pharm. 1992;87:247–253.
  • Quintanar-Guerrero D, Ganem-Quintanar A, Allémann E, et al. Influence of the stabilizer coating layer on the purification and freeze-drying of poly(D, L-lactic acid) nanoparticles prepared by an emulsion-diffusion technique. J Microencapsul. 1998;15:107–119.
  • Tom JW, Debenedetti PG. Particle formation with supercritical fluids – a review. J Aerosol Sci. 1991;22:555–584.
  • Couvreur P, Kante B, Roland M, et al. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol. 1979;31:331–332.
  • Fessi H, Puisieux F, Devissaguet JP, et al. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1–R4.
  • Govender T, Stolnik S, Garnett MC, et al. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57:171–185.
  • Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36:887–913.
  • Schubert S, Delaney JT Jr, Schubert US. Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter. 2011;7:1581–1588.
  • Barichello JM, Morishita M, Takayama K, et al. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25:471–476.
  • Chorny M, Fishbein L, Danenberg HD, et al. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release. 2002;83:389–400.
  • Legrand P, Lesieur S, Bochot A, et al. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm. 2007;344:33–43.
  • Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharmaceut Sci. 2005;24:67–75.
  • Chen JF, Zheng C, Chen GT. Interaction of macro and micromixing on particle size distribution in reactive precipitation. Chem Eng Sci. 1996;51:1957–1966.
  • Mae K. Advanced chemical processing using microspace. Chem Eng Sci. 2007;62:4842–4851.
  • Duffy DC, McDonald JC, Schueller OJA, et al. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem. 1998;70:4974–4984.
  • deMello AJ. Control and detection of chemical reactions in microfluidic systems. Nature. 2006;442:394–402.
  • El-Shabouri MH. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm. 2002;249:101–108.
  • Knight JB, Vishwanath A, Brody JP, et al. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett. 1998;80:3863–3866.
  • Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008;8:2906–2912.
  • Hessel V, Löwe H, Schӧnfeld F. Micromixers – a review on passive and active mixing principles. Chem Eng Sci. 2005;60:2479–2501.
  • Galindo-rodriguez S, Allémann E, Fessi H, et al. Associated with nanoparticle formation in the salting-out, nanoprecipitation methods. Pharm Res. 2004;21:1428–1439.
  • Molpeceres J, Guzman M, Aberturas MR, et al. Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J Pharm Sci. 1996;85:206–213.
  • Quintanar-Guerrero D, Allémann E, Doelker E, et al. A mechanistic study of the formation of polymer nanoparticles by the emulsification-diffusion technique. Colloid Polym Sci. 1997;275:640–647.
  • Thioune O, Fessi H, Devissaguet JP, et al. Preparation of pseudolatex by nanoprecipitation: influence of the solvent nature on intrinsic viscosity and interaction constant. Int J Pharm. 1997;146:233–238.
  • Aubry J, Ganachaud F, Cohen Addad JP, et al. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Langmuir. 2009;25:1970–1979.
  • Beck-Broichsitter M, Rytting E, Lebhardt T, et al. Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the “ouzo region” upon drug loading. Eur J Pharmaceut Sci. 2010;41:244–253.
  • Lince F, Marchisio DL, Barresi AA. Strategies to control the particle size distribution of poly-epsilon-caprolactone nanoparticles for pharmaceutical applications. J Colloid Interface Sci. 2008;322:505–515.
  • Dev S, Swaminathan IK, Raston CL. Nanosized drug formulations under microfluidic continuous flow. Lab Chip. 2011;11:3214–3217.
  • Anton N, Bally F, Serra CA, et al. A new microfluidic setup for precise control of the polymer nanoprecipitation process and lipophilic drug encapsulation. Soft Matter. 2012;8:10628.
  • Capretto L, Cheng W, Carugo D, et al. Mechanism of co-nanoprecipitation of organic actives and block copolymers in a microfluidic environment. Nanotechnology. 2012;23:375602.
  • Bally F, Garg DK, Serra CA, et al. Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation. Polymer. 2012;53:5045–5051.
  • Bally F. Continuous-flow synthesis of branched macromolecular architectures in microsystems: towards biomedical applications PhD thesis. University of Strasbourg. 2011.
  • Wang JX, Zhang QX, Zhou Y, et al. Microfluidic synthesis of amorphous cefuroxime axetil nanoparticles with size-dependent and enhanced dissolution rate. Chem Eng J. 2010;162:844–851.
  • Ali HSM, York P, Blagden N. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. Int J Pharm. 2009;375:107–113.
  • Mohr WD, Saxton RL, Jepson CH. Mixing in laminar-flow systems. Ind Eng Chem. 1957;49:1855–1856.
  • Zhao H, Wang JX, Wang QA, et al. Controlled liquid antisolvent precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel reactor. Ind Eng Chem Res. 2007;46:8229–8235.
  • Zhang HX, Wang JX, Shao L, et al. Microfluidic fabrication of monodispersed pharmaceutical colloidal spheres of atorvastatin calcium with tunable sizes. Ind Eng Chem Res. 2010;49:4156–4161.
  • Ali HSM, York P, Ali HMA, et al. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release. 2011;149:175–181.
  • Aoki N, Mae K. Effects of channel geometry on mixing performance of micromixers using collision of fluid segments. Chem Eng J. 2006;118:189–197.
  • Nagasawa H, Aoki N, Mae K. Design of a new micromixer for instant mixing based on the collision of micro segments. Chem Eng Technol. 2005;28:324–330.
  • Nagasawa H, Nakao M. Organic pigment fine particles and method of producing same. United State Patent. 2009. US 7,503,972 B2.
  • Chronopoulou L, Sparago C, Palocci C. A modular microfluidic platform for the synthesis of biopolymeric nanoparticles entrapping organic actives. J Nanoparticle Res. 2014;16:2703.
  • Rhee M, Valencia PM, Rodriguez MI, et al. 3D hydrodynamic focusing for confined precipitation of nanoparticles within microfluidic channels. 14th international conference on Miniaturized Systems for Chemistry and Life Sciences; 3–7 Oct 2010, Groningen, The Netherlands, 992–994.
  • Kang X, Luo C, Wei Q, et al. Mass production of highly monodisperse polymeric nanoparticles by parallel flow focusing system. Microfluid Nanofluid. 2013;15:337–345.
  • Sun J, Xianyu Y, Li M, et al. A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles. Nanoscale. 2013;5:5262–5265.
  • Johnson BK, Prud’homme RK. Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem. 2003;56:1021.
  • Lince F, Bolognesi S, Stella B, et al. Preparation of polymer nanoparticles loaded with doxorubicin for controlled drug delivery. Chem Eng Res Des. 2011;89:2410–2419.
  • Fang RH, Chen KNH, Aryal S, et al. Large-scale synthesis of lipid-polymer hybrid nanoparticles using a multi-inlet vortex reactor. Langmuir. 2012;28:13824–13829.
  • Kim Y, Chung BL, Ma M, et al. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 2012;12:3587–3591.
  • Lim JM, Swami A, Gilson LM, et al. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano. 2014;8:6056–6065.
  • Hong CC, Choi JW, Ahn CH. A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip. 2004;4:109–113.
  • Valencia, Pridgen EM, Rhee M, et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano. 2013;7:10671–10680.
  • Dong Y, Ng WK, Hu J, et al. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs. Int J Pharm. 2010;386:256–261.
  • Lim JM, Bertrand N, Valencia PM, et al. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Nanomed Nanotechnol Biol Med. 2014;10:401–409.
  • Rhee M, Valencia PM, Rodriguez MI, et al. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater. 2011;23:H79–H83.
  • Johnson BK, Prud’homme RK. Chemical processing and micromixing in confined impinging jets. AIChE J. 2003;49:2264–2282.
  • Johnson BK, Prud’homme RK. Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett. 2003;91:118302.
  • Liu Y, Olsen MG, Fox RO. Turbulence in a microscale planar confined impinging-jets reactor. Lab Chip. 2009;9:1110–1118.
  • Valente I, Celasco E, Marchisio DL, et al. Nanoprecipitation in confined impinging jets mixers: production, characterization and scale-up of pegylated nanospheres and nanocapsules for pharmaceutical use. Chem Eng Sci. 2012;77:217–227.
  • Lince F, Marchisio DL, Barresi AA. Smart mixers and reactors for the production of pharmaceutical nanoparticles: proof of concept. Chem Eng Res Des. 2009;87:543–549.
  • Shi Y, Cheng JC, Fox RO, et al. Measurements of turbulence in a microscale multi-inlet vortex nanoprecipitation reactor. J Micromech Microeng. 2013;23:075005.
  • Liu Y, Cheng C, Liu Y, et al. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem Eng Sci. 2008;63:2829–2842.
  • Cheng JC, Olsen MG, Fox RO. A microscale multi-inlet vortex nanoprecipitation reactor: turbulence measurement and simulation. Appl Phys Lett. 2009;94:204104.
  • Cheng JC, Fox RO. Kinetic modeling of nanoprecipitation using CFD coupled with a population balance. Ind Eng Chem Res. 2010;49:10651–10662.
  • Shi Y, Fox RO, Olsen MG. Confocal imaging of laminar and turbulent mixing in a microscale multi-inlet vortex nanoprecipitation reactor. Appl Phys Lett. 2011;99:204103.
  • Shi Y, Fox RO, Olsen MG. Micromixing visualization and quantification in a microscale multi-inlet vortex nanoprecipitation reactor using confocal-based reactive micro laser-induced fluorescence. Biomicrofluidics. 2014;8:044102.
  • Liu Z, Ramezani M, Fox RO, et al. Flow characteristics in a scaled-up multi-inlet vortex nanoprecipitation reactor. Ind Eng Chem Res. 2015; 54: 4512–4525.
  • Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869–876.
  • Quevedo E, Steinbacher J, McQuade DT. Interfacial polymerization within a simplified microfluidic device: capturing capsules. J Am Chem Soc. 2005;127:10498–10499.
  • Qin D, Xia Y, Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nat Protoc. 2010;5:491–502.
  • Valencia PM, Basto PA, Zhang LF, et al. Single-step assembly of homogenous lipid− polymeric and lipid− quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano. 2010;4:1671–1679.
  • Douroumis D, Fahr A. Nano- and micro-particulate formulations of poorly water-soluble drugs by using a novel optimized technique. Eur J Pharmaceut Biopharmaceut. 2006;63:173–175.
  • Liu D, Zhang H, Mäkilä E, et al. Microfluidic assisted one-step fabrication of porous silicon acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials. 2015;39:249–259.
  • Gregoriadis G. Drug entrapment in liposomes. FEBS Lett. 1973;36:292–296.
  • Lim JM, Karnik R. Optimizing the discovery and clinical translation of nanoparticles: could microfluidics hold the key? Nanomedicine. 2014;9:1113–1116.
  • Aubin J, Fletcher DF, Xuereb C. Design of micromixers using CFD modelling. Chem Eng Sci. 2005;60:2503–2516.
  • Yang AS, Chuang FC, Chen CK, et al. A high-performance micromixer using three-dimensional Tesla structures for bio-applications. Chem Eng J. 2015;263:444–451.
  • Khosravi PM, Faramarz H, Davoud J. Mixing enhancement in a passive micromixer with convergent-divergent sinusoidal microchannels and different ratio of amplitude to wave length. Comput Fluids. 2014;105:82–90.
  • Hung CI, Wang KC, Chyou CK. Design and flow simulation of a new micromixer. JSME Int J Ser B. 2005;48:17–24.
  • di Pasquale N, Marchisio DL, Barresi AA. Model validation for precipitation in solvent-displacement processes. Chem Eng Sci. 2012;84:671–683.
  • Cheng JC, Vigil RD, Fox RO. A competitive aggregation model for flash nanoprecipitation. J Colloid Interface Sci. 2010;351:330–342.
  • Wang LG, Fox RO. Comparison of micromixing models for CFD simulation of nanoparticle formation. AIChE J. 2004;50:2217–2232.
  • di Pasquale N, Marchisio DL, Carbone P, et al. Identification of nucleation rate parameters with MD and validation of the CFD model for polymer particle precipitation. Chem Eng Res Des. 2013;91:2275–2290.
  • Khan IU, Serra CA, Anton N, et al. Microfluidic conceived Trojan microcarriers for oral delivery of nanoparticles. Int J Pharm. 2015;493:7–15.
  • Khan IU, Serra CA, Anton N, et al. Microfluidic conceived drug loaded Janus particles in side-by-side capillaries device. Int J Pharm. 2014;473:239–249.
  • Khan IU, Stolch L, Serra CA, et al. Microfluidic conceived pH sensitive core–shell particles for dual drug delivery. Int J Pharm. 2015;478:78–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.