521
Views
25
CrossRef citations to date
0
Altmetric
Review

Ultrasound-mediated ocular delivery of therapeutic agents: a review

, , &
Pages 539-550 | Received 01 Feb 2016, Accepted 01 Jun 2016, Published online: 27 Jun 2016

References

  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery. AAPS J. 2010;12:348–3.
  • Kompella UB, Kadam RS, Lee VH. Recent advances in ophthalmic drug delivery. Ther Deliv. 2010;1:435–456.
  • Patel A, Cholkar K, Agrahari V, et al. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2:47–2.
  • Cheung ACY, Yu Y, Tay D, et al. Ultrasound-enhanced intrascleral delivery of protein. Int J Pharm. 2010;401:16–24.
  • H. L. Li, X. Z. Zheng, et al. Ultrasound-targeted microbubble destruction enhances AAV-mediated gene transfection in human RPE cells in vitro and rat retina in vivo. Gene Ther. 2009;16:1146–1153.
  • Sonoda S, Tachibana K, Uchino E, et al. Gene transfer to corneal epithelium and keratocytes mediated by ultrasound with microbubbles. Invest Ophthalmol Vis Sci. 2006;47:558–2.
  • Yamashita T, Sonoda S, Suzuki R, et al. A novel bubble liposome and ultrasound-mediated gene transfer to ocular surface: RC-1 cells in vitro and conjunctiva in vivo. Exp Eye Res. 2007;85:651–658.
  • Zderic V, Vaezy S, Martin RW, et al. Ocular drug delivery using 20-kHz ultrasound. Ultrasound Med Biol. 2002;28:823–829.
  • Zderic V, Clark JI, Martin RW, et al. Ultrasound-enhanced transcorneal drug delivery. Cornea. 2004;23:804–808.
  • Zderic V, Clark JI, Vaezy S. Drug delivery into the eye with the use of ultrasound. J Ultrasound Med. 2004;23:1349–10.
  • Remington LA. Clinical anatomy and physiology of the visual system. St. Louis, MO: Elsevier/Butterworth-Heinemann; 2012.
  • Dutton JJ. Atlas of clinical and surgical orbital anatomy. Philadelphia (PA): Saunders; 1994.
  • Lens A, Nemeth SC, Ledford JK. Ocular anatomy and physiology. Thorofare (NJ): Slack Incorporated; 2008.
  • Kaufman PL, Adler FH, Levin LA, et al. Adler’s physiology of the eye. Philadelphia (PA): Elsevier Health Sciences; 2011.
  • Kompella UB, Edelhauser HF. Drug product development for the back of the eye. Vol. 2. Heidelberg: Springer Science & Business Media; 2011.
  • Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol. 1996;80:389–393.
  • Weinreb RN, Khaw PT. Primary open-angle glaucoma. The Lancet. 2004;363:1711–1720.
  • Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med. 2008;358:2606–2617.
  • Resnikoff S, Pascolini D, Etya’ale D, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82:844–11.
  • Johnson MW. Etiology and treatment of macular edema. Am J Ophthalmol. 2009;147:11–1.
  • Durand ML. Endophthalmitis. Clin Microbiol Infect. 2013;19:227–3.
  • Dalkara D, Goureau O, Marazova K, et al. Let there be light: gene and cell therapy for blindness. Hum Gene Ther. 2016;27:134–147.
  • Sahel J-A, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb Perspect Med. 2014;5:a017111.
  • Apfel RE, Holland CK. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med Biol. 1991;17:179–185.
  • Leighton T. The acoustic bubble. Cambridge: Academic press; 1994.
  • Holland CK, Apfel RE. Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J Acoust Soc Am. 1990;88:2059.
  • Lafon C, Somaglino L, Bouchoux G, et al. Feasibility study of cavitation-induced liposomal doxorubicin release in an AT2 Dunning rat tumor model. J Drug Target. 2012;20:691–702.
  • Lafond M, Mestas J-L, Prieur F, et al. Unseeded inertial cavitation for enhancing the delivery of chemotherapies: a safety study. Ultrasound Med Biol. 2016;42:220–221.
  • Böhmer MR, Chlon CHT, Raju BI, et al. Focused ultrasound and microbubbles for enhanced extravasation. J Control Release Off J Control Release Soc. 2010;148:18–24.
  • Evjen TJ, Hagtvet E, Moussatov A, et al. In vivo monitoring of liposomal release in tumours following ultrasound stimulation. Eur J Pharm Biopharm. 2013;84:526–531.
  • Frenkel V, Etherington A, Greene M, et al. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol. 2006;13:469–4.
  • Mestas J-L, Fowler RA, .Evjen TJ, et al. Therapeutic efficacy of the combination of doxorubicin-loaded liposomes with inertial cavitation generated by confocal ultrasound in AT2 Dunning rat tumour model. J Drug Target. 2014;22:688.
  • Rapoport N. Drug-loaded perfluorocarbon nanodroplets for ultrasound-mediated drug delivery. Adv Exp Med Biol. 2016;880:221.
  • Graham S, Kwan J, Myers R, et al. Ultrasound-mediated drug release from nanoscale liposomes using nanoscale cavitation nuclei. J Acoust Soc Am. 2015;138:1846–1846.
  • Lokerse WJ, Kneepkens EC, Ten Hagen TL, et al. In depth study on thermosensitive liposomes: optimizing formulations for tumor specific therapy and in vitro to in vivo relations. Biomaterials. 2016;82:138–150.
  • Novell A, Sabbagh CA, Escoffre J-M, et al. Focused ultrasound influence on calcein-loaded thermosensitive stealth liposomes. Int J Hyperthermia. 2015;31:349–358.
  • Mo S, Coussios -C-C, Seymour L, et al. Ultrasound-enhanced drug delivery for cancer. Expert Opin Drug Deliv. 2012;9:1525–1538.
  • Ahmed SE, Martins AM, Husseini GA. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J Drug Target. 2015;23:16–42.
  • Chettab K, Roux S, Mathé D. Spatial and temporal control of cavitation allows high in vitro transfection efficiency in the absence of transfection reagents or contrast agents. PloS One. 2015;10:e0134247.
  • Escoffre JM, Piron J, Novell A, et al. Doxorubicin delivery into tumor cells with ultrasound and microbubbles. Mol Pharm. 2011;8:1322–1323.
  • Miller DL, Pislaru SV, Greenleaf JF. Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet. 2002;27:115–134.
  • Van Wamel A, Kooiman K, Harteveld M, et al. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Controlled Release. 2006;112:149–1.
  • Arvanitis CD, Livingstone MS, Vykhodtseva N. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring. PLoS ONE. 2012;7:e45783.
  • Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery – a general review. Expert Opin Drug Deliv. 2004;1:37–56.
  • Nuritdinov VA. Phonophoresis and cavitation. Vestn Oftalmol. 1981;1:56–1.
  • Riesz P, Kondo T. Free radical formation induced by ultrasound and its biological implications. Free Radic Biol Med. 1992;13:449–454.
  • Clarke PR, Hill CR. Physical and chemical aspects of ultrasonic disruption of cells. J Acoust Soc Am. 1970;47:649–2.
  • Iwashina T, Mochida J, Miyazaki T, et al. Low-intensity pulsed ultrasound stimulates cell proliferation and proteoglycan production in rabbit intervertebral disc cells cultured in alginate. Biomaterials. 2006;27:354–3.
  • Kobayashi Y, Sakai D, Iwashina T, et al. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line. Eur Cell Mater. 2009;17:15.
  • Hutton WC, Elmer WA, Boden SD, et al. The effect of hydrostatic pressure on intervertebral disc metabolism. Spine. 1999;24:1507.
  • Feril LB, Kondo T, Cui Z-G, et al. Apoptosis induced by the sonomechanical effects of low intensity pulsed ultrasound in a human leukemia cell line. Cancer Lett. 2005;221:145–15.
  • Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev. 2008;60:1103–1116.
  • Hallow DM, Mahajan AD, McCutchen TE, et al. Measurement and correlation of acoustic cavitation with cellular bioeffects. Ultrasound Med Biol. 2006;32:1111–1122.
  • Un K, Kawakami S, Higuchi Y, et al. Involvement of activated transcriptional process in efficient gene transfection using unmodified and mannose-modified bubble lipoplexes with ultrasound exposure. J Controlled Release. 2011;156:355–3.
  • Yang K-H, Parvizi J, Wang S-J, et al. Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res. 1996;14:802–809.
  • Furusawa Y, Hassan MA, Zhao Q-L, et al. Effects of therapeutic ultrasound on the nucleus and genomic DNA. Ultrason Sonochem. 2014;21:2061–2066.
  • Hassan MA, Furusawa Y, Minemura M, et al. Ultrasound-induced new cellular mechanism involved in drug resistance. PloS One. 2012;7:e48291–12.
  • Gamarra F, Spelsberg F, Kuhnle GE, et al. High-energy shock waves induce blood flow reduction in tumors. Cancer Res. 1993;53:101–105.
  • Maxwell A, Sapozhnikov O, Bailey M, et al. Disintegration of tissue using high intensity focused ultrasound: two approaches that utilize shock waves. Acoust Today. 2012;8:24–4.
  • Roberts WW, Hall TL, Ives K, et al. Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J Urol. 2006;175:734–738.
  • Flyckt VMM, Raaymakers BW, Lagendijk JJW. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels. Phys Med Biol. 2006;51:5007–2.
  • Sapareto SA, Hopwood LE, Dewey WC, et al. Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res. 1978;38:393–2.
  • Aptel F, Charrel T, Lafon C, et al. Miniaturized high-intensity focused ultrasound device in patients with glaucoma: a clinical pilot study. Investig Opthalmology Vis Sci. 2011;52:8747–12.
  • Konings AW. Membranes as targets for hyperthermic cell killing. Recent Results Cancer Res. 1988;109:9–21.
  • Roti Roti JL. Cellular responses to hyperthermia (40–46°C): cell killing and molecular events. Int J Hyperthermia. 2008;24:3–1.
  • Kowalczuk L, Boudinet M, El Sanharawi M, et al. In vivo gene transfer into the ocular ciliary muscle mediated by ultrasound and microbubbles. Ultrasound Med Biol. 2011;37:1814–1827.
  • Park J, Zhang Y, Vykhodtseva N, et al. Targeted and reversible blood-retinal barrier disruption via focused ultrasound and microbubbles. PloS One. 2012;7:e42754–8.
  • Suen W-L-L, Wong HS, Yu Y, et al. Ultrasound-mediated transscleral delivery of macromolecules to the posterior segment of rabbit eye in vivo. Investig Opthalmology Vis Sci. 2013;54:4358–6.
  • Nabili M, Shenoy A, Chawla S, et al. Ultrasound-enhanced ocular delivery of dexamethasone sodium phosphate: an in vivo study. J Ther Ultrasound. 2014;2:6–1.
  • Nabili M, Patel H, Mahesh SP, et al. Ultrasound-enhanced delivery of antibiotics and anti-inflammatory drugs into the eye. Ultrasound Med Biol. 2013;39:638–4.
  • Murugappan SK, Zhou Y. Transsclera drug delivery by pulsed high-intensity focused ultrasound (HIFU): an ex vivo study. Curr Eye Res. 2015;40:1172–11.
  • Razavi A, Clement D, Fowler RA, et al. Contribution of inertial cavitation in the enhancement of in vitro transscleral drug delivery. Ultrasound Med Biol. 2014;40:1216–1227.
  • Peeters L, Lentacker I, Vandenbroucke RE, et al. Can ultrasound solve the transport barrier of the neural retina? Pharm Res. 2008;25:2657–11.
  • Lamy R, Chan E, Zhang H, et al. Ultrasound-enhanced penetration of topical riboflavin into the corneal stroma. Invest Ophthalmol Vis Sci. 2013;54:5908–8.
  • Huang D, Wang L, Dong Y, et al. A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Für Pharm. 2014;88:104–1.
  • Yamaguchi K, Barbe MF, Brown IR, et al. Induction of stress (heat shock) protein 70 and its mRNA in rat corneal epithelium by hyperthermia. Curr Eye Res. 1990;9:913–919.
  • Barnett SB, Duck F, Ziskin M. WFUMB symposium on safety of ultrasound in medicine: conclusions and recommendations on biological effects and safety of ultrasound contrast agents, 2006. Ultrasound Med Biol. 2007;33:233–2.
  • U.S. FDA. Guidance for industry and FDA staff: information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers. Doc Issued Sept. 2008;9.
  • Palte HD, Gayer S, Arrieta E, et al. Are ultrasound-guided ophthalmic blocks injurious to the eye? A comparative rabbit model study of two ultrasound devices evaluating intraorbital thermal and structural changes. Anesth Analg. 2012;115:194–1.
  • Nabili M, Geist C, Zderic V. Thermal safety of ultrasound-enhanced ocular drug delivery: a modeling study. Med Phys. 2015;42:5604–5615.
  • Lizzi FL, Coleman DJ, Driller J, et al. Experimental, ultrasonically induced lesions in the retina, choroid, and sclera. Invest Ophthalmol Vis Sci. 1978;17:350–354.
  • Collis J, Manasseh R, Liovic P, et al. Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics. 2010;50:273–2.
  • Rooney JA. Shear as a mechanism for sonically induced biological effects. J Acoust Soc Am. 1972;52:1718–6.
  • Coussios CC, Roy RA. Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu Rev Fluid Mech. 2008;40:395–420.
  • Berry M, Easty DL. Isolated human and rabbit eye: models of corneal toxicity. Toxicol In Vitro. 1993;7:461–464.
  • Saletes I, Gilles B, Béra J-C. Lowering cavitation threshold using bifrequency excitation: nonlinear aspect and influence of the difference frequency. AIP Conference Proceedings. 2009;1113:53.
  • Behar-Cohen F. Drug delivery to the eye: current trends and future perspectives. Ther Deliv. 2012;3:1135–1137.
  • Bikbova G, Bikbov M. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol. 2014;92:e30–e34.
  • Buzzonetti L, Petrocelli G, Valente P, et al. Iontophoretic transepithelial corneal cross-linking to halt keratoconus in pediatric cases: 15-month follow-up. Cornea. 2015;34:512–515.
  • Mitragotri S, Edwards DA, Blankschtein D, et al. A mechanistic study of ultrasonically-enhanced transdermal drug delivery. J Pharm Sci. 1995;84:697–6.
  • Azagury A, Khoury L, Enden G, et al. Ultrasound mediated transdermal drug delivery. Adv Drug Deliv Rev. 2014;72:127–2.
  • Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–2.
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–11.
  • Polat BE, Blankschtein D, Langer R. Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opin Drug Deliv. 2010;7:1415–1432.
  • Katz NP, Shapiro DE, Herrmann TE, et al. Rapid onset of cutaneous anesthesia with EMLA cream after pretreatment with a new ultrasound-emitting device. Anesth Analg. 2004;98:371–372.
  • Zempsky WT, Robbins B, McKay K. Reduction of topical anesthetic onset time using ultrasound: a randomized controlled trial prior to venipuncture in young children. Pain Med Malden Mass. 2008;9:795–802.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.