891
Views
47
CrossRef citations to date
0
Altmetric
Review

Extended ocular drug delivery systems for the anterior and posterior segments: biomaterial options and applications

, , &
Pages 611-620 | Received 31 May 2016, Accepted 15 Aug 2016, Published online: 01 Sep 2016

References

  • Rieke ER, Amaral J, Becerra SP, et al. Sustained subconjunctival protein delivery using a thermosetting gel delivery system. J Ocular Pharmacol Ther. 2010 Feb;26(1):55–64.
  • Cohen S, Yoshioka T, Lucarelli M, et al. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm Res. 1991 Jun;8(6):713–720.
  • Kang-Mieler JJ, Osswald CR, Mieler WF. Advances in ocular drug delivery: emphasis on the posterior segment. Expert Opin Drug Deliv. 2014 Jul;11(10):1647–1660.
  • Lee VH, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol. 1986 Winter;2(1):67–108.
  • Ahmed I, Patton TF. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 1985 Apr;26(4):584–587.
  • Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008 May;5(5):567–581.
  • Schultz C, Breaux J, Schentag J, et al. Drug delivery to the posterior segment of the eye through hydrogel contact lenses. Clin Exp Optom. 2011 Mar;94(2):212–218.
  • Davis BM, Normando EM, Guo L, et al. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small. 2014 Apr 24;10(8):1575–1584.
  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery. Aaps J. 2010 Sep;12(3):348–360.
  • Endophthalmitis Study Group ESoC, Refractive S. Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J Cataract Refract Surg. 2007 Jun;33(6):978–988.
  • Mamalis N, Edelhauser HF, Dawson DG, et al. Toxic anterior segment syndrome. J Cataract Refract Surg. 2006 Feb;32(2):324–333.
  • Lane SS, Osher RH, Masket S, et al. Evaluation of the safety of prophylactic intracameral moxifloxacin in cataract surgery. J Cataract Refract Surg. 2008 Sep;34(9):1451–1459.
  • Montan PG, Wejde G, Koranyi G, et al. Prophylactic intracameral cefuroxime. Efficacy in preventing endophthalmitis after cataract surgery. J Cataract Refract Surg. 2002 Jun;28(6):977–981.
  • Hughes PM, Olejnik O, Chang-Lin J-E, et al. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005 Dec 13;57(14):2010–2032.
  • Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979 Mar-Apr;23(5):279–296.
  • Gaudana R, Jwala J, Boddu SH, et al. Recent perspectives in ocular drug delivery. Pharm Res. 2009 May;26(5):1197–1216.
  • Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev. 2005 Dec 13;57(14):2063–2079.
  • Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001 Oct 31; 52(1):37–48.
  • Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug delivery. J Control Release. 2006 Feb 21;110(3):479–489.
  • Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents. Retina. 2009 Jul-Aug;29(7):875–912.
  • Lewis RA, Von Wolff K, Tetz M, et al. Canaloplasty: circumferential viscodilation and tensioning of Schlemm’s canal using a flexible microcatheter for the treatment of open-angle glaucoma in adults: interim clinical study analysis. J Cataract Refract Surg. 2007 Jul;33(7):1217–1226.
  • Olsen TW, Feng X, Wabner K, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006 Nov;142(5):777–787.
  • Olsen TW, Feng X, Wabner K, et al. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Invest Ophthalmol Vis Sci. 2011 Jun;52(7):4749–4756.
  • Rizzo S, Ebert FG, Bartolo ED, et al. Suprachoroidal drug infusion for the treatment of severe subfoveal hard exudates. Retina. 2012 Apr;32(4):776–784.
  • Tetz M, Rizzo S, Augustin AJ. Safety of submacular suprachoroidal drug administration via a microcatheter: retrospective analysis of European treatment results. Ophthalmologica. 2012;227(4):183–189.
  • Janssen Research & Development, LLC. A safety study of CNTO 2476 in patients with age-related macular degeneration. Available from: https://ClinicalTrials.gov/show/NCT01226628
  • Patel SR, Lin AS, Edelhauser HF, et al. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011 Jan;28(1):166–176.
  • Clearside Biomedical, Inc. Safety study of suprachoroidal triamcinolone acetonide via microneedle to treat uveitis. Available from: https://ClinicalTrials.gov/show/NCT01789320
  • Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012;3:188.
  • Mi F-L, Lin Y-M, Wu Y-B, et al. Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior. Biomaterials. 2002 Aug;23(15):3257–3267.
  • Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6(4):319–327.
  • Gentile P, Chiono V, Carmagnola I, et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–3659.
  • Mi F-L, Shyu -S-S, Lin Y-M, et al. Chitin/PLGA blend microspheres as a biodegradable drug delivery system: a new delivery system for protein. Biomaterials. 2003 Dec;24(27):5023–5036.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011 Sep 1;3(3):1377–1397.
  • Siegel SJ, Kahn JB, Metzger K, et al. Effect of drug type on the degradation rate of PLGA matrices. Eur J Pharmaceut Biopharmaceut. 2006 Nov;64(3):287–293.
  • Keles H, Naylor A, Clegg F, et al. Investigation of factors influencing the hydrolytic degradation of single PLGA microparticles. Polym Degrad Stab. 2015;119:228–241.
  • Zheng C, Liang W. A one-step modified method to reduce the burst initial release from PLGA microspheres. Drug Deliv. 2010 Feb;17(2):77–82.
  • Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res. 2004 Jan;27(1):1–12.
  • Zheng C-H, Gao J-Q, Zhang Y-P, et al. A protein delivery system: biodegradable alginate-chitosan-poly(lactic-co-glycolic acid) composite microspheres. Biochem Biophys Res Commun. 2004 Oct 29;323(4):1321–1327.
  • Ghassemi AH, Van Steenbergen MJ, Talsma H, et al. Hydrophilic polyester microspheres: effect of molecular weight and copolymer composition on release of BSA. Pharm Res. 2010 Sep;27(9):2008–2017.
  • Manoharan C, Singh J. Insulin loaded PLGA microspheres: effect of zinc salts on encapsulation, release, and stability. J Pharm Sci. 2009 Feb;98(2):529–542.
  • Musumeci T, Bucolo C, Carbone C, et al. Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int J Pharm. 2013 Jan 20;440(2):135–140.
  • Yang L, Cui F, Cun D, et al. Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles. Int J Pharm. 2007 Aug 1;340(1–2):163–172.
  • Zhai P, Chen XB, Schreyer DJ. PLGA/alginate composite microspheres for hydrophilic protein delivery. Mater Sci Eng C Mater Biol Appl. 2015 Nov;1(56):251–259.
  • Jay SM, Saltzman WM. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release. 2009 Feb 20;134(1):26–34.
  • Allison SD. Liposomal drug delivery. J Infus Nurs. 2007 Mar-Apr;30(2):89–95; quiz 120.
  • Kaur IP, Garg A, Singla AK, et al. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004 Jan 9;269(1):1–14.
  • Natarajan JV, Ang M, Darwitan A, et al. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine. 2012;7:123–131.
  • Bressler NM, Arnold J, Benchaboune M, et al. Verteporfin therapy of subfoveal choroidal neovascularization in patients with age-related macular degeneration: additional information regarding baseline lesion composition’s impact on vision outcomes-TAP report No. 3. Arch Ophthalmol. 2002 Nov;120(11):1443–1454.
  • Bressler NM, Treatment of Age-Related Macular Degeneration with Photodynamic Therapy Study G. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol. 2001 Feb; 119(2):198–207.
  • Fenton C, Perry CM. Verteporfin: a review of its use in the management of subfoveal choroidal neovascularisation. Drugs Aging. 2006;23(5):421–445.
  • Lajavardi L, Bochot A, Camelo S, et al. Downregulation of endotoxin-induced uveitis by intravitreal injection of vasoactive intestinal Peptide encapsulated in liposomes. Invest Opthalmol Vis Sci. 2007 Jul;48(7):3230–3238.
  • Kang-Mieler JJ, Kiernan DF, Mieler WF. Drug delivery to the posterior segment. Duane’s Ophthalmol. Philadelphia (PA): Lippincott Williams & Williams; 2011.
  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002 Jan 17; 54(1):3–12.
  • Lin -C-C, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009 Mar;26(3):631–643.
  • Oh JK, Drumright R, Siegwart DJ, et al. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. 2008 Apr;33(4):448–477.
  • Peppas NA, Bures P, Leobandung W, et al. Hydrogels in pharmaceutical formulations. Eur J Pharmaceut Biopharmaceut. 2000 Jul;50(1):27–46.
  • Peppas NA, Hilt JZ, Khademhosseini A, et al. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006 Jun 6;18(11):1345–1360.
  • Kanjickal D, Lopina S, Evancho-Chapman MM, et al. Effects of sterilization on poly(ethylene glycol) hydrogels. J Biomed Mat Res A. 2008 Dec 1;87(3):608–617.
  • Karajanagi SS, Yoganathan R, Mammucari R, et al. Application of a dense gas technique for sterilizing soft biomaterials. Biotechnol Bioeng. 2011 Jul;108(7):1716–1725.
  • Hammer N, Brandl FP, Kirchhof S, et al. Protein compatibility of selected cross-linking reactions for hydrogels. Macromol Biosci. 2015 Mar;15(3):405–413.
  • Moreau MF, Chappard D, Lesourd M, et al. Free radicals and side products released during methylmethacrylate polymerization are cytotoxic for osteoblastic cells. J Biomed Mater Res. 1998 Apr;40(1):124–131.
  • Kirchhof S, Goepferich AM, Brandl FP. Hydrogels in ophthalmic applications. Eur J Pharmaceut Biopharmaceut. 2015 Sep;95(Pt B):227–238.
  • Ali M, Byrne ME. Controlled release of high molecular weight hyaluronic acid from molecularly imprinted hydrogel contact lenses. Pharm Res. 2009 Mar;26(3):714–726.
  • Hiratani H, Fujiwara A, Tamiya Y, et al. Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials. 2005 Apr;26(11):1293–1298.
  • Malaekeh-Nikouei B, Vahabzadeh SA, Mohajeri SA. Preparation of a molecularly imprinted soft contact lens as a new ocular drug delivery system for dorzolamide. Curr Drug Deliv. 2013 Jun;10(3):279–285.
  • Paradiso P, Galante R, Santos L, et al. Comparison of two hydrogel formulations for drug release in ophthalmic lenses. J Biomed Mat Res B Appl Biomat. 2014 Aug;102(6):1170–1180.
  • Ribeiro A, Veiga F, Santos D, et al. Bioinspired imprinted PHEMA-hydrogels for ocular delivery of carbonic anhydrase inhibitor drugs. Biomacromolecules. 2011 Mar 14;12(3):701–709.
  • Simoes SM, Veiga F, Torres-Labandeira JJ, et al. Syringeable Pluronic-alpha-cyclodextrin supramolecular gels for sustained delivery of vancomycin. Eur J Pharmaceut Biopharmaceut. 2012 Jan;80(1):103–112.
  • Alvarez-Lorenzo C, Concheiro A. Molecularly imprinted polymers for drug delivery. J Chromatogr B. 2004 May 5;804(1):231–245.
  • Alvarez-Lorenzo C, Yañez F, Barreiro-Iglesias R, et al. Imprinted soft contact lenses as norfloxacin delivery systems. J Control Release. 2006 Jul 20;113(3):236–244.
  • Maulvi FA, Lakdawala DH, Shaikh AA, et al. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J Control Release. 2016 Feb 6;226:47–56.
  • Agrawal AK, Das M, Jain S. In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv. 2012 Apr;9(4):383–402.
  • Zignani M, Tabatabay C, Gurny R. Topical semisolid drug-delivery - kinetics and tolerance of ophthalmic hydrogels. Adv Drug Deliv Rev. 1995 Aug;16(1):51–60.
  • Rozier A, Mazuel C, Grove J, et al. Gelrite - a novel, ion-activated, insitu gelling polymer for ophthalmic vehicles - effect on bioavailability of timolol. Int J Pharm. 1989 Dec;57(2):163–168.
  • Sanzgiri YD, Maschi S, Crescenzi V, et al. Gellan-based systems for ophthalmic sustained delivery of methylprednisolone. J Control Release. 1993 Sep;26(3):195–201.
  • Balasubramaniam J, Pandit JK. Ion-activated in situ gelling systems for sustained ophthalmic delivery of ciprofloxacin hydrochloride. Drug Deliv. 2003 Jul-Sep;10(3):185–191.
  • Sultana Y, Aqil M, Ali AA. Ion-activated, Gelrite-based in situ ophthalmic gels of pefloxacin mesylate: comparison with conventional eye drops. Drug Deliv. 2006 May-Jun;13(3):215–219.
  • Liu Z, Li J, Nie S, et al. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm. 2006 Jun 6;315(1–2):12–17.
  • Kang-Mieler JJ, Mieler WF. Thermo-responsive hydrogels for ocular drug delivery. Dev Ophthalmol. 2016;55:104–111.
  • Hu C-C, Chaw J-R, Chen C-F, et al. Controlled release bevacizumab in thermoresponsive hydrogel found to inhibit angiogenesis. Biomed Mater Eng. 2014;24(6):1941–1950.
  • Rauck BM, Friberg TR, Medina Mendez CA, et al. Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo. Invest Ophthalmol Vis Sci. 2014 Jan;55(1):469–476.
  • Chilkoti A, Dreher MR, Meyer DE, et al. Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev. 2002 Sep 13;54(5):613–630.
  • Drapala PW, Brey EM, Mieler WF, et al. Role of thermo-responsiveness and poly(ethylene glycol) diacrylate cross-link density on protein release from poly(N-isopropylacrylamide) hydrogels. J Biomat Sci Polym Edn. 2010;22(1–3):59–75.
  • Drapala PW, Jiang B, Chiu YC, et al. The effect of glutathione as chain transfer agent in PNIPAAm-based thermo-responsive hydrogels for controlled release of proteins. Pharm Res. 2014 Mar;31(3):742–753.
  • Kang Derwent JJ, Mieler WF. Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc. 2008;106:206–214.
  • Klouda L. Thermoresponsive hydrogels in biomedical applications A seven-year update. Eur J Pharmaceut Biopharmaceut. 2015 Nov;97:338–349.
  • Turturro SB, Guthrie MJ, Appel AA, et al. The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function. Biomaterials. 2011 May;32(14):3620–3626.
  • Liu Y, Wang R, Zarembinski TI, et al. The application of hyaluronic acid hydrogels to retinal progenitor cell transplantation. Tissue Engineering Part A. 2013 Jan;19(1–2):135–142.
  • Lee J-Y, Shin J-M, Yeum CE, et al. Intravitreal delivery of mesenchymal stem cells loaded onto hydrogel affects the regulatory expression of endogenous NGF and BDNF in ischemic rat retina. Tissue Eng Regen Med. 2012 Oct;9(5):249–258.
  • Ballios BG, Cooke MJ, Van Der Kooy D, et al. A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials. 2010 Mar;31(9):2555–2564.
  • Moritera T, Ogura Y, Honda Y, et al. Microspheres of biodegradable polymers as a drug-delivery system in the vitreous. Invest Ophthalmol Vis Sci. 1991 May;32(6):1785–1790.
  • Shin SH, Lee J, Lim KS, et al. Sequential delivery of TAT-HSP27 and VEGF using microsphere/hydrogel hybrid systems for therapeutic angiogenesis. J Control Release. 2013 Feb 28;166(1):38–45.
  • Lee J, Tan CY, Lee SK, et al. Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction. J Control Release. 2009 Aug 4;137(3–4):196–202.
  • Lee J, Lee KY. Injectable microsphere/hydrogel combination systems for localized protein delivery. Macromol Biosci. 2009 Jul 7; 9(7):671–676.
  • Lee J, Bhang SH, Park H, et al. Active blood vessel formation in the ischemic hindlimb mouse model using a microsphere/hydrogel combination system. Pharm Res. 2010 May;27(5):767–774.
  • DeFail AJ, Chu CR, Izzo N, et al. Controlled release of bioactive TGF-beta 1 from microspheres embedded within biodegradable hydrogels. Biomaterials. 2006 Mar;27(8):1579–1585.
  • Burdick JA, Ward M, Liang E, et al. Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels. Biomaterials. 2006 Jan;27(3):452–459.
  • Lajavardi L, Camelo S, Agnely F, et al. New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J Control Release. 2009 Oct 1;139(1):22–30.
  • Osswald CR, Kang-Mieler JJ. Controlled and extended in vitro release of bioactive anti-vascular endothelial growth factors from a microsphere-hydrogel drug delivery system. Curr Eye Res. 2016 Jan 14;1–7. [Epub ahead of print].
  • Osswald CR, Kang-Mieler JJ. Controlled and extended release of a model protein from a microsphere-hydrogel drug delivery system. Ann Biomed Eng. 2015 Apr 3;43:2609–2617.
  • Guthrie MJ, Osswald CR, Valio NL, et al. Objective area measurement technique for choroidal neovascularization from fluorescein angiography. Microvasc Res. 2014 Jan;91:1–7.
  • Brandt JD, Sall K, DuBiner H, et al. Six-month intraocular pressure reduction with a topical Bimatoprost ocular insert: results of a phase II randomized controlled study. Ophthalmology. 2016 Aug;123(8):1685–1694.
  • Hughes PM, Robinson MR, Burke JA; inventors; Google Patents, assignee. Intraocular pressure reduction with intracameral bimatoprost implants. Allergan, Inc., U.S. Patent US20100278898 A1. 2011.
  • Navratil T, Garcia A, Verhoeven RS, et al. Advancing ENV515 (travoprost) intracameral implant for glaucoma into clinical development: nonclinical evaluation of ENV515 in support of first-time-in-human phase 2a clinical study. ARVO Abstract and Poster Presentation; 2015 May 3–7, Denver (CO).
  • Tao W. Application of encapsulated cell technology for retinal degenerative diseases. Expert Opin Biol Ther. 2006 Jul;6(7):717–726.
  • Sieving PA, Caruso RC, Tao W, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3896–3901.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.