222
Views
8
CrossRef citations to date
0
Altmetric
Review

Delivery of drugs, growth factors, genes and stem cells via intrapericardial, epicardial and intramyocardial routes for sustained local targeted therapy of myocardial disease

, &
Pages 1227-1239 | Received 15 Nov 2016, Accepted 03 Feb 2017, Published online: 22 Feb 2017

References

  • Sutton RL. The absorption of ointments. BMJ. 1908;1:1225.
  • Folkman J, Long DM. The use of silicone rubber as a carrier for prolonged drug therapy. J Surg Res. 1964;4:139–142.
  • Edelman ER, Adams DH, Karnovsky MJ. Effect of controlled adventitial heparin delivery on smooth muscle cell proliferation following endothelial injury. Proc Natl Acad Sci U S A. 1990;87:3773–3777.
  • Edelman ER, Nugent MA, Karnovsky MJ. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc Natl Acad Sci U S A. 1993;90:1513–1517.
  • National Center for Health Statistics. [cited 2017 Jan 19]. Available from: http://www.cdc.gov/nchs/fastats/heart-disease.htm
  • Orr CF, Ahlskog JE. Frequency, characteristics, and risk factors for amiodarone neurotoxicity. Arch Neurol. 2009;66:865–869.
  • Chen WC, Chen CY, Wu BR, et al. Amiodarone use is associated with increased risk of stroke in patients with nonvalvular atrial fibrillation: a nationwide population-based cohort study. Medicine. 2015;94:0000000000000849.
  • Kang HM, Kang YS, Kim SH, et al. Amiodarone-induced hepatitis and polyneuropathy. Korean J Intern Med. 2007;22:225–229.
  • Lai SW, Lin CL, Liao K-F. Digoxin use may increase the relative risk of acute pancreatitis: a population-based case-control study in Taiwan. Int J Cardiol. 2015;181:235–238.
  • Spiehler VR. Regional distribution of digoxin in the human brain: implications for neurotoxicity. Proc West Pharmacol Soc. 1982;25:79–82.
  • Robertson DM, Hollenhorst RW, Callahan JA. Ocular manifestations of digitalis toxicity. Discussion and report of three cases of central scotomas. Arch Ophthalmol. 1966;76:640–645.
  • Fischer UM, Harting MT, Jimenez F, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18:683–692.
  • Lazarous DF, Shou M, Stiber JA, et al. Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovasc Res. 1997;36:78–85.
  • Epstein SE, Kornowski R, Fuchs S, et al. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation. 2001;104:115–119.
  • Hatzistergos KE, Blum A, Ince T, et al. What is the oncologic risk of stem cell treatment for heart disease? Circ Res. 2011 May 27;108(11):1300–1303.
  • Laham RJ, Rezaee M, Post M, et al. Intrapericardial administration of basic fibroblast growth factor: myocardial and tissue distribution and comparison with intracoronary and intravenous administration. Catheter Cardiovasc Interv. 2003;58:375–381.
  • Rajanayagam MA, Shou M, Thirumurti V, et al. Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs. J Am Coll Cardiol. 2000;35:519–526.
  • Feng XD, Wang XN, Yuan XH, et al. Effectiveness of biatrial epicardial application of amiodarone-releasing adhesive hydrogel to prevent postoperative atrial fibrillation. J Thorac Cardiovasc Surg. 2014;148:939–943.
  • Wang W, Mei YQ, Yuan XH, et al. Clinical efficacy of epicardial application of drug-releasing hydrogels to prevent postoperative atrial fibrillation. J Thorac Cardiovasc Surg. 2016;151:80–85.
  • Laham RJ, Sellke FW, Edelman ER, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation. 1999;100:1865–1871.
  • Ruel M, Laham RJ, Parker JA, et al. Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein. J Thorac Cardiovasc Surg. 2002;124:28–34.
  • Schumacher B, Pecher P, Von Specht BU, et al. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation. 1998;97:645–650.
  • Schumacher B, StegmannP Pecher T. The stimulation of neoangiogenesis in the ischemic human heart by the growth factor FGF: first clinical results. J Cardiovasc Surg. 1998;39:783–789.
  • Favaloro L, Diez M, Mendiz O, et al. High-dose plasmid-mediated VEGF gene transfer is safe in patients with severe ischemic heart disease (Genesis-I). A phase I, open-label, two-year follow-up trial. Catheter Cardiovasc Interv. 2013;82:899–906.
  • Giusti II, Rodrigues CG, Salles FB, et al. High doses of vascular endothelial growth factor 165 safely, but transiently, improve myocardial perfusion in no-option ischemic disease. Hum Gene Ther Methods. 2013;24:298–306.
  • Kastrup J, Jorgensen E, Ruck A, et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris a randomized double-blind placebo-controlled study: the Euroinject One trial. J Am Coll Cardiol. 2005;45:982–988.
  • Kilian EG, Sadoni S, Vicol C, et al. Myocardial transfection of hypoxia inducible factor-1alpha via an adenoviral vector during coronary artery bypass grafting - a multicenter phase I and safety study. Circ J. 2010;74:916–924.
  • Kim JS, Hwang HY, Cho KR, et al. Intramyocardial transfer of hepatocyte growth factor as an adjunct to CABG: phase I clinical study. Gene Ther. 2013;20:717–722.
  • Kukula K, Chojnowska L, Dabrowski M, et al. Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am Heart J. 2011;161:581–589.
  • Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation. 1998;98:2800–2804.
  • Rosengart TK, Bishawi MM, Halbreiner MS, et al. Long-term follow-up assessment of a phase 1 trial of angiogenic gene therapy using direct intramyocardial administration of an adenoviral vector expressing the VEGF121 cDNA for the treatment of diffuse coronary artery disease. Hum Gene Ther. 2013;24:203–208.
  • Rosengart TK, Lee LY, Patel SR, et al. Six-month assessment of a phase I trial of angiogenic gene therapy for the treatment of coronary artery disease using direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA. Ann Surg. 1999;230:466–470.
  • Stewart DJ, Hilton JD, Arnold JM, et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther. 2006;13:1503–1511.
  • Hamano K, Nishida M, Hirata K, et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J. 2001;65:845–847.
  • Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet. 2003;361:45–46.
  • Losordo DW, Henry TD, Davidson C, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res. 2011;109:428–436.
  • Stamm C, Kleine HD, Choi YH, et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg. 2007;133:717–725.
  • Losordo DW, Schatz RA, White CJ, et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation. 2007;115:3165–3172.
  • Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107:2294–2302.
  • Pokushalov E, Romanov A, Chernyavsky A, et al. Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J Cardiovasc Transl Res. 2010;3:160–168.
  • Natsumeda M, Suncion V, Balkan W, et al. The impact of intramyocardial mesenchymal stem cell injection according to scar size for the treatment of ischemic cardiomyopathy. J Am Coll Cardiol. 2016;67:158.
  • Rodrigo SF, van Ramshorst J, Hoogslag GE, et al. Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchymal stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up. J Cardiovasc Transl Res. 2013;6:816–825.
  • Beeres SL, Bax JJ, Dibbets-Schneider P, et al. Intramyocardial injection of autologous bone marrow mononuclear cells in patients with chronic myocardial infarction and severe left ventricular dysfunction. Am J Cardiol. 2007;100:1094–1098.
  • Williams AR, Trachtenberg B, Velazquez DL, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res. 2011;108:792–796.
  • Bartunek J, Behfar A, Dolatabadi D, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol. 2013;61:2329–2338.
  • Dorward PK, FlaimJ Ludbrook M. Blockade of cardiac nerves by intrapericardial local anaesthetics in the conscious rabbit. Aust J Exp Biol Med Sci. 1983;61:219–230.
  • Sedlarik KM, Birkigt HG, Seelig G, et al. [Intrapericardial administration of drugs in the animal experiment]. Z Exp Chir Transplant Kunstliche Organe. 1985;18:308–314.
  • Ayers GM, Rho TH, Ben-David J, et al. Amiodarone instilled into the canine pericardial sac migrates transmurally to produce electrophysiologic effects and suppress atrial fibrillation. J Cardiovasc Electrophysiol. 1996;7:713–721.
  • Darsinos JT, Karli JN, Samouilidou EC, et al. Distribution of amiodarone in heart tissues following intrapericardial administration. Int J Clin Pharmacol Ther. 1999;37:301–306.
  • Polizzotti BD, Arab S, Kühn B, et al. Intrapericardial delivery of gelfoam enables the targeted delivery of periostin peptide after myocardial infarction by inducing fibrin clot formation. Plos One. 2012;7:10.
  • Sosa E, Scanavacca M, d’Avila A, et al. A new technique to perform epicardial mapping in the electrophysiology laboratory. J Cardiovasc Electrophysiol. 1996;7:531–536.
  • Laham RJ, Simons M, Hung D. Subxyphoid access of the normal pericardium: a novel drug delivery technique. Catheter Cardiovasc Interv. 1999;47:109–111.
  • Baek SH, Hrabie JA, Keefer LK, et al. Augmentation of intrapericardial nitric oxide level by a prolonged-release nitric oxide donor reduces luminal narrowing after porcine coronary angioplasty. Circulation. 2002;105:2779–2784.
  • Waxman S, Pulerwitz TC, Rowe KA, et al. Preclinical safety testing of percutaneous transatrial access to the normal pericardial space for local cardiac drug delivery and diagnostic sampling. Catheter Cardiovasc Interv. 2000;49:472–477.
  • Hou D, Rogers PI, Toleikis PM, et al. Intrapericardial paclitaxel delivery inhibits neointimal proliferation and promotes arterial enlargement after porcine coronary overstretch. Circulation. 2000;102:1575–1581.
  • Ladage D, Turnbull IC, Ishikawa K, et al. Delivery of gelfoam-enabled cells and vectors into the pericardial space using a percutaneous approach in a porcine model. Gene Ther. 2011;18:979–985.
  • Ladage D, Yaniz-Galende E, Rapti K, Stimulating myocardial regeneration with periostin peptide in large mammals improves function post-myocardial infarction but increases myocardial fibrosis. Plos One. 2013;8:e59656.
  • Roques C, Salmon A, Fiszman MY, et al. Intrapericardial administration of novel DNA formulations based on thermosensitive Poloxamer 407 gel. Int J Pharm. 2007;331:220–223.
  • Bolderman RW, Hermans JJ, Rademakers LM, et al. Intrapericardial delivery of amiodarone and sotalol: atrial transmural drug distribution and electrophysiological effects. J Cardiovasc Pharmacol. 2009;54:355–363.
  • Marcano J, Campos K, Rodriguez V, et al. Intrapericardial delivery of amiodarone rapidly achieves therapeutic levels in the atrium. Heart Surg Forum. 2013;16:E279–E286.
  • Richardson ES, Rolfes C, Woo OS, et al. Cardiac responses to the intrapericardial delivery of metoprolol: targeted delivery compared to intravenous administration. J Cardiovasc Transl Res. 2012;5:535–540.
  • van Brakel TJ, Hermans JJ, Janssen BJ, et al. Intrapericardial delivery enhances cardiac effects of sotalol and atenolol. J Cardiovasc Pharmacol. 2004;44:50–56.
  • Kumar K, Nguyen K, Waxman S, et al. Potent antifibrillatory effects of intrapericardial nitroglycerin in the ischemic porcine heart. J Am Coll Cardiol. 2003;41:1831–1837.
  • Fei L, Baron AD, Henry DP, et al. Intrapericardial delivery of l-arginine reduces the increased severity of ventricular arrhythmias during sympathetic stimulation in dogs with acute coronary occlusion: nitric oxide modulates sympathetic effects on ventricular electrophysiological properties. Circulation. 1997;96:4044–4049.
  • Xiao YF, Sigg DC, Ujhelyi MR, et al. Pericardial delivery of omega-3 fatty acid: a novel approach to reducing myocardial infarct sizes and arrhythmias. Am J Physiol Heart Circ Physiol. 2008;294:7.
  • Hou D, Zhang P, Marsh AE, et al. Intrapericardial ethanol delivery inhibits neointimal proliferation after porcine coronary overstretch. J Chin Med Assoc. 2003;66:637–642.
  • Hughes GC, Biswas SS, Yin B, et al. Therapeutic angiogenesis in chronically ischemic porcine myocardium: comparative effects of bFGF and VEGF. Ann Thorac Surg. 2004;77:812–818.
  • Landau C, Jacobs AK, Haudenschild CC. Intrapericardial basic fibroblast growth factor induces myocardial angiogenesis in a rabbit model of chronic ischemia. Am Heart J. 1995;129:924–931.
  • Uchida Y, Yanagisawa-Miwa A, Nakamura F, et al. Angiogenic therapy of acute myocardial infarction by intrapericardial injection of basic fibroblast growth factor and heparin sulfate: an experimental study. Am Heart J. 1995;130:1182–1188.
  • Laakmann S, Fortmüller L, Piccini I, et al. Minimally invasive closed-chest ultrasound-guided substance delivery into the pericardial space in mice. Naunyn Schmiedebergs Arch Pharmacol. 2013;386:227–238.
  • March KL, Woody M, Mehdi K, et al. Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol. 1999;22:I23–I29.
  • Blazquez R, Sanchez-Margallo FM, Crisostomo V, et al. Intrapericardial delivery of cardiosphere-derived cells: an immunological study in a clinically relevant large animal model. Plos One. 2016;11:e0149001.
  • Labhasetwar V, Underwood T, Gallagher M, et al. Sotalol controlled-release systems for arrhythmias: in vitro characterization, in vivo drug disposition, and electrophysiologic effects. J Pharm Sci. 1994;83:156–164.
  • Bolderman RW, Hermans JJ, Rademakers LM, et al. Epicardial application of an amiodarone-releasing hydrogel to suppress atrial tachyarrhythmias. Int J Cardiol. 2011;149:341–346.
  • Siden R, Flowers WE, Levy RJ. Epicardial propranolol administration for ventricular arrhythmias in dogs: matrix formulation and characterization. Biomaterials. 1992;13:764–770.
  • Lovich MA, Wei AE, Maslov MY, et al. Local epicardial inotropic drug delivery allows targeted pharmacologic intervention with preservation of myocardial loading conditions. J Pharm Sci. 2011;100:4993–5006.
  • Maslov MY, Edelman ER, Wei AE, et al. High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: an example with epicardial inotropic drug delivery. J Control Release. 2013;171:201–207.
  • Maslov MY, Edelman ER, Pezone MJ, et al. Myocardial drug distribution generated from local epicardial application: potential impact of cardiac capillary perfusion in a swine model using epinephrine. J Control Release. 2014;194:257–265.
  • Pearlman JD, Hibberd MG, Chuang ML, et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med. 1995;1:1085–1089.
  • Le KN, Hwang CW, Tzafriri AR, et al. Vascular regeneration by local growth factor release is self-limited by microvascular clearance. Circulation. 2009;119:2928–2935.
  • Gerbin KA, Yang X, Murry CE, Enhanced electrical integration of engineered human myocardium via intramyocardial versus epicardial delivery in infarcted rat hearts. Plos One. 2015;10:e0131446.
  • Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006;12:459–465.
  • Labhasetwar V, Kadish A, Underwood T, et al. The efficacy of controlled release d-sotalol-polyurethane epicardial implants for ventricular arrhythmias due to acute ischemia in dogs. J Control Release. 1993;23:75–85.
  • Lin H, Parmacek MS, Morle G, et al. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation. 1990;82:2217–2221.
  • Watanabe E, Smith DM, Sun J, et al. Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heart. Basic Res Cardiol. 1998;93:30–37.
  • Kobayashi T, Hamano K, Li TS, et al. Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. J Surg Res. 2000;89:189–195.
  • Chen WS, Lee BG, Park DW, et al. Controlled dual delivery of fibroblast growth factor-2 and interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair. Biomaterials. 2015;72:138–151.
  • Cohen JE, Purcell BP, MacArthur JW Jr., et al. A bioengineered hydrogel system enables targeted and sustained intramyocardial delivery of neuregulin, activating the cardiomyocyte cell cycle and enhancing ventricular function in a murine model of ischemic cardiomyopathy. Circ Heart Fail. 2014;7:619–626.
  • Laham RJ, Post M, Rezaee M, et al. Transendocardial and transepicardial intramyocardial fibroblast growth factor-2 administration: myocardial and tissue distribution. Drug Metab Dispos. 2005;33:1101–1107.
  • Zhu H, Jiang X, Li X, et al. Intramyocardial delivery of VEGF165 via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction. Heart Vessels. 2016;31:963–975.
  • Garbayo E, Gavira JJ, de Yebenes MG, et al. Catheter-based intramyocardial injection of FGF1 or NRG1-loaded MPs improves cardiac function in a preclinical model of ischemia-reperfusion. Sci Rep. 2016;6:25932.
  • Gabel R, Klopsch C, Furlani D, et al. Single high-dose intramyocardial administration of erythropoietin promotes early intracardiac proliferation, proves safety and restores cardiac performance after myocardial infarction in rats. Interact Cardiovasc Thorac Surg. 2009;9:20–25; discussion 25.
  • Wang T, Jiang XJ, Lin T, et al. The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials. 2009;30:4161–4167.
  • Fromes Y, Salmon A, Wang X, et al. Gene delivery to the myocardium by intrapericardial injection. Gene Ther. 1999;6:683–688.
  • Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015–1024.
  • Li XH, Zhou X, Zeng S, et al. Effects of intramyocardial injection of platelet-rich plasma on the healing process after myocardial infarction. Coron Artery Dis. 2008;19:363–370.
  • Pape AC, Bakker MH, Tseng CC, et al. An injectable and drug-loaded supramolecular hydrogel for local catheter injection into the pig heart. J Vis Exp. 2015;7:52450.
  • Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet. 2003;361:47–49.
  • Yeo C, Mathur A. Autologous bone marrow-derived stem cells for ischemic heart failure: regenerate-IHD trial. Regen Med. 2009;4:119–127.
  • Lehtinen M, Patila T, Vento A, et al. Prospective, randomized, double-blinded trial of bone marrow cell transplantation combined with coronary surgery - perioperative safety study. Interact Cardiovasc Thorac Surg. 2014;19:990–996.
  • Perin EC, Silva GV, Zheng Y, et al. Randomized, double-blind pilot study of transendocardial injection of autologous aldehyde dehydrogenase-bright stem cells in patients with ischemic heart failure. Am Heart J. 2012;163:415–421, 421 e1.
  • Donndorf P, Kaminski A, Tiedemann G, et al. Validating intramyocardial bone marrow stem cell therapy in combination with coronary artery bypass grafting, the perfect phase III randomized multicenter trial: study protocol for a randomized controlled trial. Trials. 2012;13:1745–6215.
  • Wehberg KE, Answini G, Wood D, et al. Intramyocardial injection of autologous platelet-rich plasma combined with transmyocardial revascularization. Cell Transplant. 2009;18:353–359.
  • Siden R, Kadish A, Flowers W, et al. Epicardial controlled-release verapamil prevents ventricular tachycardia episodes induced by acute ischemia in a canine model. J Cardiovasc Pharmacol. 1992;19:798–809.
  • Labhasetwar V, Underwood T, Heil RW Jr., et al. Epicardial administration of ibutilide from polyurethane matrices: effects on defibrillation threshold and electrophysiologic parameters. J Cardiovasc Pharmacol. 1994;24:826–840.
  • Sintov A, Scott WA, Gallagher KP, et al. Conversion of ouabain-induced ventricular tachycardia in dogs with epicardial lidocaine: pharmacodynamics and functional effects. Pharm Res. 1990;7:28–33.
  • Sintov A, Scott WA, Siden R, et al. Efficacy of epicardial controlled-release lidocaine for ventricular tachycardia induced by rapid ventricular pacing in dogs. J Cardiovasc Pharmacol. 1990;16:812–817.
  • Avitall B, Hare J, Zander G, et al. Iontophoretic transmyocardial drug delivery. A novel approach to antiarrhythmic drug therapy. Circulation. 1992;85:1582–1593.
  • Carvas M, Nascimento BC, Acar M, et al. Intrapericardial ranolazine prolongs atrial refractory period and markedly reduces atrial fibrillation inducibility in the intact porcine heart. J Cardiovasc Pharmacol. 2010;55:286–291.
  • Darsinos JT, Samouilidou EC, Krumholz B, et al. Distribution of lidocaine and digoxin in heart tissues and aorta following intrapericardial administration. Int J Clin Pharmacol Ther Toxicol. 1993;31:611–615.
  • Kumar K, Nearing BD, Carvas M, et al. Ranolazine exerts potent effects on atrial electrical properties and abbreviates atrial fibrillation duration in the intact porcine heart. J Cardiovasc Electrophysiol. 2009;20:796–802.
  • Ujhelyi MR, Hadsall KZ, Euler DE, et al. Intrapericardial therapeutics: a pharmacodynamic and pharmacokinetic comparison between pericardial and intravenous procainamide delivery. J Cardiovasc Electrophysiol. 2002;13:605–611.
  • van Brakel TJ, Hermans JJ, Accord RE, et al. Effects of intrapericardial sotalol and flecainide on transmural atrial electrophysiology and atrial fibrillation. J Cardiovasc Electrophysiol. 2009;20:207–215.
  • Vereckei A, Gorski JC, Ujhelyi M, et al. Intrapericardial ibutilide administration fails to terminate pacing-induced sustained atrial fibrillation in dogs. Cardiovasc Drugs Ther. 2004;18:269–277.
  • Bolderman RW, Bruin P, Hermans JJ, et al. Atrium-targeted drug delivery through an amiodarone-eluting bilayered patch. J Thorac Cardiovasc Surg. 2010;140:904–910.
  • Beckerman Z, Azran A, Cohen O, et al. A novel amiodarone-eluting biological glue for reducing postoperative atrial fibrillation: first animal trial. J Cardiovasc Pharmacol Ther. 2014;19:481–491.
  • Grech ED. ABC of interventional cardiology: percutaneous coronary intervention. I: History and development. BMJ. 2003;326:1080–1082.
  • Kedem J, Sonn J, Scheinowitz M, et al. Relationship between local oxygen consumption and local and external cardiac work: effect of tachycardia. Cardiovasc Res. 1989;23:1043–1052.
  • Olshansky B. Tachycardia-induced ventricular dysfunction jigsaw: do all pieces now fit? Acta Physiol (Oxf). 2016 Jan 20. DOI:10.1111/apha.12653.
  • Franco WP, Bracey AW, Franco KL, et al. Fibroblastic growth factor and infarct size. Ann Intern Med. 1980 Oct;93(4):637–638.
  • Banai S, Jaklitsch MT, Casscells W, et al. Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ Res. 1991;69:76–85.
  • Simons M, Annex BH, Laham RJ, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation. 2002;105:788–793.
  • Penny WF, Hammond HK. Clinical use of intracoronary gene transfer of fibroblast growth factor for coronary artery disease. Curr Gene Ther. 2004;4:225–230.
  • Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–2286.
  • Bao J, Naimark W, Palasis M, et al. Intramyocardial delivery of FGF2 in combination with radio frequency transmyocardial revascularization. Catheter Cardiovasc Interv. 2001;53:429–434.
  • Harada K, Grossman W, Friedman M, et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest. 1994;94:623–630.
  • Harada K, Friedman M, Lopez JJ, et al. Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol. 1996;270:H1791–H1802.
  • Lopez JJ, Laham RJ, Stamler A, et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res. 1998;40:272–281.
  • Yang Y, Gruwel ML, Dreessen de Gervai P, et al. MRI study of cryoinjury infarction in pig hearts: I. Effects of intrapericardial delivery of bFGF/VEGF embedded in alginate beads. NMR Biomed. 2012;25:177–188.
  • Bougioukas I, Didilis V, Ypsilantis P, et al. Intramyocardial injection of low-dose basic fibroblast growth factor or vascular endothelial growth factor induces angiogenesis in the infarcted rabbit myocardium. Cardiovasc Pathol. 2007;16:63–68.
  • Laham RJ, Simons M, Hung D. Therapeutic myocardial angiogenesis using percutaneous intrapericardial drug delivery. Clin Cardiol. 1999;22:6–9.
  • Laham RJ, Simons M, Tofukuji M, et al. Modulation of myocardial perfusion and vascular reactivity by pericardial basic fibroblast growth factor: insight into ischemia-induced reduction in endothelium-dependent vasodilatation. J Thorac Cardiovasc Surg. 1998;116:1022–1028.
  • Lopez JJ, Edelman ER, Stamler A, et al. Basic fibroblast growth factor in a porcine model of chronic myocardial ischemia: a comparison of angiographic, echocardiographic and coronary flow parameters. J Pharmacol Exp Ther. 1997;282:385–390.
  • Nelson DM, Hashizume R, Yoshizumi T, et al. Intramyocardial injection of a synthetic hydrogel with delivery of bFGF and IGF1 in a rat model of ischemic cardiomyopathy. Biomacromolecules. 2014;15:1–11.
  • Hatzistergos KE, Mitsi AC, Zachariou C, et al. Randomised comparison of growth hormone versus IGF-1 on early post-myocardial infarction ventricular remodelling in rats. Growth Horm IGF Res. 2008;18:157–165.
  • Matthews KG, Devlin GP, Stuart SP, et al. Intrapericardial IGF-i improves cardiac function in an ovine model of chronic heart failure. Heart Lung Circ. 2005;14:98–103.
  • Koudstaal S, Bastings MM, Feyen DA, et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J Cardiovasc Transl Res. 2014;7:232–241.
  • Heilmann C, von Samson P, Schlegel K, et al. Comparison of protein with DNA therapy for chronic myocardial ischemia using fibroblast growth factor-2. Eur J Cardiothorac Surg. 2002;22:957–964.
  • Heilmann CA, Attmann T, Thiem A, et al. Gene therapy in cardiac surgery: intramyocardial injection of naked plasmid DNA for chronic myocardial ischemia. Eur J Cardiothorac Surg. 2003;24:785–793.
  • Ahmet I, Sawa Y, Yamaguchi T, et al. Gene transfer of hepatocyte growth factor improves angiogenesis and function of chronic ischemic myocardium in canine heart. Ann Thorac Surg. 2003;75:1283–1287.
  • Vassalli G, Bueler H, Dudler J, et al. Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol. 2003;90:229–238.
  • French BA, Mazur W, Geske RS, et al. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation. 1994;90:2414–2424.
  • Patel SR, Lee LY, Mack CA, et al. Safety of direct myocardial administration of an adenovirus vector encoding vascular endothelial growth factor 121. Hum Gene Ther. 1999;10:1331–1348.
  • Zhang D, Gai L, Fan R, et al. Efficacy and safety of therapeutic angiogenesis from direct myocardial administration of an adenoviral vector expressing vascular endothelial growth factor 165. Chin Med J. 2002;115:643–648.
  • Jacquier A, Higgins CB, Martin AJ, et al. Injection of adeno-associated viral vector encoding vascular endothelial growth factor gene in infarcted swine myocardium: MR measurements of left ventricular function and strain. Radiology. 2007;245:196–205.
  • Horvath KA, Doukas J, Lu CY, et al. Myocardial functional recovery after fibroblast growth factor 2 gene therapy as assessed by echocardiography and magnetic resonance imaging. Ann Thorac Surg. 2002;74:481–486.
  • Jayasankar V, Woo YJ, Bish LT, et al. Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation. 2003;9:II230–II236.
  • Guerrero M, Athota K, Moy J, et al. Vascular endothelial growth factor-165 gene therapy promotes cardiomyogenesis in reperfused myocardial infarction. J Interv Cardiol. 2008;21:242–251.
  • Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–705.
  • Freyman T, Polin G, Osman H, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J. 2006;27:1114–1122.
  • Kudo M, Wang Y, Wani MA, et al. Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart. J Mol Cell Cardiol. 2003;35:1113–1119.
  • Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A. 2009;106:14022–14027.
  • Ra B, Geenen DL. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. Plos One. 2012;7:25.
  • Chacko SM, Khan M, Kuppusamy ML, et al. Myocardial oxygenation and functional recovery in infarct rat hearts transplanted with mesenchymal stem cells. Am J Physiol Heart Circ Physiol. 2009;296:H1263–H1273.
  • Fuchs S, Baffour R, Zhou YF, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol. 2001;37:1726–1732.
  • Schuh A, Liehn EA, Sasse A, et al. Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res Cardiol. 2008;103:69–77.
  • Simpson D, Liu H, Fan TH, et al. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells. 2007;25:2350–2357.
  • Arana M, Gavira JJ, Pena E, et al. Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction. Biomaterials. 2014;35:143–151.
  • Gleason JD, Nguyen KP, Kissinger KV, et al. Myocardial drug distribution pattern following intrapericardial delivery: an MRI analysis. J Cardiovasc Magn Reson. 2002;4:311–316.
  • Sun F, Sanchez FM, Fernandez-Portales J, et al. Chronic intrapericardial catheterization for repeated drug delivery: technical feasibility study in the Göttingen minipig. J Invasive Cardiol. 2012;24:210–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.