427
Views
11
CrossRef citations to date
0
Altmetric
Review

Low colonic absorption drugs: risks and opportunities in the development of oral extended release products

, , &
Pages 197-211 | Received 02 Jun 2017, Accepted 04 Oct 2017, Published online: 14 Oct 2017

References

  • Lipp R. Major advances in oral drug delivery over the past 15 years. Am Pharm Rev October. 2013;31. [cited 2017 Oct 11]. Available from: http://www.americanpharmaceuticalreview.com/Featured-Articles/148747-Major-Advances-in-Oral-Drug-Delivery-over-the-Past-15-Years/
  • Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine. Gut. 1986 August;27(8):886–892.
  • Washington N, Washington CG, Wilson C. Chapter 7. Drug delivery to the large intestine and rectum. In: Washington N, Washington CG, Wilson C, eds. Physiological pharmaceutics barriers to drug absorption. 2nd ed. New york, NY:Taylor and Francis. 2001.
  • Connor A, King G, Jones K Evaluation of human regional bioavailability to assess whether modified release development is feasible, http://mms.technologynetworks.net/posters/510.pdf. Accessed August 30, 2014.
  • Tannergren C, Bergendal A, Lennernas H, et al. Toward an increased understanding of the barriers to colonic drug absorption in humans: implications for early controlled release candidate assessment. Mol Pharmaceutics. 2009;6(1):60–73.
  • Washington N, Washington CG, Wilson C. Chapter 5. The stomach. In: Washington N, Washington CG, Wilson C, eds. Physiological pharmaceutics barriers to drug absorption. 2nd ed. London:Taylor and Francis. 2001.
  • Sjogren E, Abrahamsson B, Augustijns P, et al. In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci. 2014 Jun;16(57):99–151.
  • Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010 Oct 4; 7(5):1388–1405.
  • Hu M, Li X. Oral bioavailability: basic principles, advanced concepts, and applications. 1 ed. MA,Wiley; 2011.
  • Zhang QY, Dunbar D, Ostrowska A, et al. Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos. 1999 Jul;27(7):804–809.
  • Thorn M, Finnstrom N, Lundgren S, et al. Cytochromes P450 and MDR1 mRNA expression along the human gastrointestinal tract. Br J Clin Pharmacol. 2005 Jul;60(1):54–60.
  • Berggren S, Gall C, Wollnitz N, et al. Gene and protein expression of P-glycoprotein, MRP1, MRP2, and CYP3A4 in the small and large human intestine. Mol Pharm. 2007 Mar-Apr;4(2):252–257.
  • Lin JH, Chiba M, Baillie TA. Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol Rev. 1999 Jun;51(2):135–158.
  • Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009 May;61(5):541–558.
  • Soergel KH. Showdown at the tight junction. Gastroenterology. 1993 Oct;105(4):1247–1250.
  • Norris DA, Puri N, Sinko PJ. The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev. 1998 Dec 1;34(2–3):135–154.
  • Madara JL, Pappenheimer JR. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membr Biol. 1987;100(2):149–164.
  • Lennernas H. Human intestinal permeability. J Pharm Sci. 1998 Apr;87(4):403–410.
  • Proctor WR, Bourdet DL, Thakker DR. Mechanisms underlying saturable intestinal absorption of metformin. Drug Metab Dispos. 2008 Aug;36(8):1650–1658.
  • Vidon N, Chaussade S, Noel M, et al. Metformin in the digestive tract. Diabetes Res Clin Pract. 1988 Feb 19;4(3):223–229.
  • Washington N, Washington CG, Wilson C. Chapter 1. Cell membranes, epithelial barriers and drug absorption. In: Washington N, Washington CG, Wilson C, eds. Physiological pharmaceutics barriers to drug absorption. 2nd ed. New york, NY:Taylor and Francis. 2001.
  • Sherwood L, Appendix C. Storage, replication, and expression of genetic information. Sherwood L, ed. Fundamentals of Human Physiology. Belomont, CA. 2011.
  • Hardy JG, Evans DF, Zaki I, et al. Evaluation of an enteric coated naproxen tablet using gamma scintigraphy and pH monitoring. Int J Pharm. 1987;37(3):245–250.
  • Tsume Y, Amidon GL, Takeuchi S. Dissolution effect of gastric and intestinal pH for a BCS class II drug, pioglitazone: new in vitro dissolution system to predict in vivo dissolution. J Bioequiv Availab. 2013;5(6):224–227.
  • Castan C, Crowley PJ, Guimberteau F, et al., inventors; WO 2005051322 A2. Carvedilol free base, salts, anhydrous forms or solvate thereof, corresponding pharmaceutical compositions, controlled release formulations, and treatment or delivery methods. 2005.
  • Oh CK, inventor Novel formulations of Carvedilol, WO2003028718 2003.
  • Stenberg P, Luthman K, Artursson P. Virtual screening of intestinal drug permeability. J Cont Release. 2000 Mar 1;65(1–2):231–243.
  • El-Kattan A, Varma M. Chapter 1. Oral absorption, intestinal metabolism and human oral bioavailability. In: Paxton J, ed. Topics on drug metabolism. Croatia. 2012.
  • Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol. 2002 Jun;42(6):620–643.
  • Petri N, Lennernas H. Chapter 9. In vivo permeability studies in the gastrointestinal tract of humans. In: Waterbeemd H, Testa B, eds. Drug bioavailability: estimation of solubility. Permeability, Absorption and Bioavailability; WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2009.
  • Lai Y. Chapter 8. Drug transporters in drug discovery and development. In: Lai Y, ed. Transporters in drug discovery and development: detailed concepts and best practice. Cambridge, UK:Woodhead Publishing Limited; 2013.
  • Intestinal Epithelia, http://dbts.ucsf.edu/fdatransportal/organs/small-intestine/. Access December 28, 2014.
  • Russel FGM. Chapter 2. Transporters: importance in drug absorption, distribution, and removal. In: Pang KS, Rodrigues AD, Peter RM, eds. Enzyme- and transporter-based drug-drug interactions. Springer New York Dordrecht Heidelberg London; 2010.
  • Koepsell H. Chapter 2. Organic cation and zwitterion transporters (OCTs, OCTNs). In: You G, Morris ME, eds. Drug transporters: molecular characterization and role in drug disposition. MA:John Wiley & Sons, Inc.; 2014.
  • Knutter I, Wollesky C, Kottra G, et al. Transport of angiotensin-converting enzyme inhibitors by H+/peptide transporters revisited. J Pharmacol Exp Ther. 2008 Nov;327(2):432–441.
  • Liu Z, Wang S, Hu M. Chapter 11 - oral absorption basics: pathways, physico-chemical and biological factors affecting absorption. In: Porter YQCGZZLR, ed. Developing solid oral dosage forms. San Diego: Academic Press; 2009. p. 263–288.
  • Hu M, Amidon GL. Passive and carrier-mediated intestinal absorption components of captopril. J Pharm Sci. 1988 Dec;77(12):1007–1011.
  • Arakawa H, Shirasaka Y, Haga M, et al. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5. Biopharm Drug Dispos. 2012 Sep;33(6):332–341.
  • Park MS, Okochi H, Benet LZ. Is ciprofloxacin a substrate of P-glycoprotein? Arch Drug Inf. 2011 Mar;4(1):1–9.
  • Merino G, Alvarez AI, Pulido MM, et al. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab Dispos. 2006 Apr;34(4):690–695.
  • Ziegler TR, Fernandez-Estivariz C, Gu LH, et al. Distribution of the H+/peptide transporter PepT1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome. Am J Clin Nutr. 2002 May;75(5):922–930.
  • Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet. 2005 Dec;20(6):452–477.
  • Barr WH, Zola EM, Candler EL, et al. Differential absorption of amoxicillin from the human small and large intestine. Clin Pharmacol Ther. 1994 Sep;56(3):279–285.
  • Li M, Anderson GD, Phillips BR, et al. Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters. Drug Metab Dispos. 2006 Apr;34(4):547–555.
  • Lennernas H, Nilsson D, Aquilonius S-M, et al. The effect of L-leucine on the absorption of levodopa, studied by regional jejunal perfusion in man. Br J Clin Pharmacol. 1993;(35):243–250.
  • Camargo SM, Vuille-dit-Bille RN, Mariotta L, et al. The molecular mechanism of intestinal levodopa absorption and its possible implications for the treatment of Parkinson’s disease. J Pharmacol Exp Ther. 2014 Oct;351(1):114–123.
  • Lai Y. 2. drug transporters in drug discovery and development. drug transporters in drug discovery and development: Lai Y, ed. Transporters in drug discovery and development: Detailed concepts and best practice: Woodhead Publishing Limited 2013. doi:10.1533/9781908818287.633
  • Mouly S, Paine MF. P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm Res. 2003 Oct;20(10):1595–1599.
  • Dahan A, Amidon GL. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol. 2009 Aug;297(2):G371–7.
  • Makhey VD, Guo A, Norris DA, et al. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm Res. 1998 Aug;15(8):1160–1167.
  • Arza RA, Gonugunta CS, Veerareddy PR. Formulation and evaluation of swellable and floating gastroretentive ciprofloxacin hydrochloride tablets. AAPS PharmSciTech. 2009;10(1):220–226.
  • Shanthi CN, Mahato AK, Gupta R. A review on Captopril oral sustained/controlled release formulations. Int J Drug Dev Res. 2010;2(2):40–46.
  • Colon and delivery, http://shodhganga.inflibnet.ac.in/bitstream/10603/8027/8/08_chapter%202.pdf. Accessed September 1, 2014.
  • Patel GN, Patel GC, Patel RB, et al. Oral colon-specific drug delivery: an overview. Drug Deliv Technol. 2006;6(7):62–72.
  • Sousa T, Paterson R, Moore V, et al. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm. 2008 Nov 3;363(1–2): 1–25.
  • Basit AW, Lacey LF. Colonic metabolism of ranitidine: implications for its delivery and absorption. Int J Pharm. 2001;227(1–2): 157–165. 10/4/.
  • Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm. 2008 Sep-Oct;5(5):760–775.
  • Menon R, Cefali E, Wilding I, et al. The assessment of human regional drug absorption of free acid and sodium salt forms of acipimox, in healthy volunteers, to direct modified release formulation strategy. Biopharm Drug Dispos. 2009 Dec;30(9):508–516.
  • Liu HY, Pi XT, Zheng XL, et al. Pharmacokinetics of aminophylline delivered to the small intestine and colon using remote controlled capsules. Chin Med J. 2010 Feb 5;123(3):320–325.
  • Cundy KC, Sastry S, Luo W, et al. Clinical pharmacokinetics of XP13512, a novel transported prodrug of gabapentin. J Clin Pharmacol. 2008 Dec;48(12):1378–1388.
  • Wong PSL, Yan D, Hwang S, et al. EP 1677756 A2, Administration of levodopa and carbidopa. 2004.
  • Drewe J, Beglinger C, Kissel T. The absorption site of cyclosporin in the human gastrointestinal tract. Br J Clin Pharmacol. 1992;33(1):39–43.
  • Gande S, Rao Y. Sustained-release effervescent floating matrix tablets of baclofen: development, optimization and in vitro-in vivo evaluation in healthy human volunteers. Daru. 2011;19(3):202–209.
  • Sugihara H, Matsui Y, Takeuchi H, et al. Development of a gastric retentive system as a sustained-release formulation of pranlukast hydrate and its subsequent in vivo verification in human studies. Eur J Pharm Sci. 2014;53:62–68.
  • Terao T, Matsuda K, Shouji H. Improvement in site-specific intestinal absorption of furosemide by Eudragit L100–55. J Pharm Pharmacol. 2001 Apr;53(4):433–440.
  • Connor A, Evans P, Doto J, et al. An oral human drug absorption study to assess the impact of site of delivery on the bioavailability of bevirimat. J Clin Pharmacol. 2009 May;49(5):606–612.
  • FDA clinical pharmacology and biopharmaceutics reviews - Gralise (gabapentin) Tablets 300 mg and 600 mg http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022544Orig1s000ClinPharmR.pdf. Accessed on September 10, 2010.
  • Uchino H, Kanai Y, Kim DK, et al. Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol. 2002 Apr;61(4):729–737.
  • Dickens D, Webb SD, Antonyuk S, et al. Transport of gabapentin by LAT1 (SLC7A5). Biochem Pharmacol. 2013 Jun 1;85(11):1672–1683.
  • Stewart BH, Kugler AR, Thompson PR, et al. A saturable transport mechanism in the intestinal absorption of gabapentin is the underlying cause of the lack of proportionality between increasing dose and drug levels in plasma. Pharm Res. 1993 Feb;10(2):276–281.
  • Lal R, Sukbuntherng J, Luo W, et al. Clinical pharmacokinetic drug interaction studies of gabapentin enacarbil, a novel transported prodrug of gabapentin, with naproxen and cimetidine. Br J Clin Pharmacol. 2010;69(5):498–507.
  • Eaimtrakarn S, Itoh Y, Kishimoto JI, et al. Retention and transit of intestinal mucoadhesive films in rat small intestine. Int J Pharm. 2001 Aug 14;224(1–2):61–67.
  • Varum FJ, McConnell EL, Sousa JJ, et al. Mucoadhesion and the gastrointestinal tract. Crit Rev Ther Drug Carrier Syst. 2008;25(3):207–258.
  • Guimberteau F, Dargelas F, inventors; US 20070264346, Multimicroparticulate pharmaceutical forms for oral administration. 2007
  • Micropump - Flamel, http://www.flamel.com/drug-delivery-platforms/micropump/. Accessed September 28, 2014.
  • Nolte K, Backfisch G, Neidlein R. In vitro absorption studies with carvedilol using a new model with porcine intestine called BM-RIMO (Boehringer-Mannheim ring model). Arzneimittel-Forschung. 1999 Sep;49(9):745–749.
  • Depomed technology, http://www.depomed.com/technology. Accessed September 10, 2014.
  • Shell JW, Louie-Helm J, Markey M US 6340475, Extending the duration of drug release within the stomach during the fed mode 1997.
  • Shell JW, Louie-Helm J, Markey M, inventors; US 6635280, Efficiency absorption in stomach; FDA Orange book listed patent for gabapentin. 1997.
  • Gusler G, Berner B, Chau M, et al., inventors; US 6723340, Optimal polymer mixtures for gastric retentive tablets 2001.
  • Dharmadhikari NB, Zala YR WO 2005101983, Gastric retention system. 2004.
  • Gastro retentive system - Sunpharma, http://www.sunpharma.in/gastro-retentive.htm. Accessed September 30, 2014.
  • clinicaltrials.gov. A clinical evaluation of the safety of Baclofen GRS ER capsules, http://clinicaltrials.gov/show/NCT01797185. Accessed January 3, 2015.
  • Omidian H, Fesharaki S, Park K. Chapter 6. Oral controlled delivery mechanisms and technologies. In: Wilson CG, ed. Controlled release in oral drug delivery. New york,USA. 2011.
  • Singh LPKSR, Umalkar DG, Chauhan VK, et al. Floating effervescent tablet: a review. J Pharm Biomed Sci. 2011;5(11):1–6.
  • Srikanth MV, Ram BJ, Sunil SA, et al. Gastroretentive drug delivery systems novel approaches its eveluation review Int J Pharm Sci Rev Res. 2011;10(1):203–216.
  • Ranade VV, Cannon JB. Chapter 5. Oral drug delivery. In: Ranade VV, Cannon JB, eds. Drug delivery systems. Third ed. Boca Raton, Florida:CRC Press. 2011.
  • Rajak P, Bhattacharya A, Sharma N, et al. Gastro-retentive floating drug delivery system - an approach in gastroretentive drug delivery. Int J Pharm Pharm Sci. 2011;3(suppl 4):9–16.
  • Gabor F, Fillafer C, Neutsch L, et al. Chapter 12. Improving oral delivery. In: Scha¨fer-Korting M, ed. Drug delivery. Springer-Verlag Berlin Heidelberg; 2010.
  • Sheth PR, Tossounian J. The hydrodynamically balanced system (HBSTM): a novel drug delivery system for oral use. Drug Dev Ind Pharm. 1984;10(2):313–339.
  • Amit JK, Rammulrajsinh R, Sonali D, et al. Hydrodynamically balanced systems (HBS): innovative approach of gastroretention: a review. Int J PharmTech Res. 2011;3(3):1495–1508.
  • Notari. Chapter 5. V. Drug delivery to prolong duration. In: Notari, ed. Biopharmaceutics and clinical pharmacokinetics: an introduction. New york. Fourth. 1986.
  • Friedman M, Klausner E, Lavy E, et al. US 6685962, Enclosed in insoluble membranes 1999.
  • Abramov E, Carni G, Kirmayer D, et al., inventors; WO 2012059815, Accordion pill comprising levodopa for an improved treatment of Parkinson’s disease symptoms. 2010.
  • Klausner EA, Lavy E, Stepensky D, et al. Novel gastroretentive dosage forms: evaluation of gastroretentivity and its effect on riboflavin absorption in dogs. Pharm Res. 2002 Oct;19(10):1516–1523.
  • Intecpipeline-Accordion Pill, http://intecpharma.com/pipleline/. Accessed September 23, 2014.
  • The Accordion Pill™ - World Drug Delivery & Formulation 2014. http://cdnddfeventcom/pdf/LimorDaggan_2014pdf Accessed on September 23, 2014.
  • Besse J. EP 00956599 B1, Floating pharmaceutical composition comprising an active phase and a non-active phase 1999.
  • Jerome B, inventor WO 2001010417, Floating pharmaceutical composition comprising an active phase and a non-active phase. 1999.
  • Besse J US 7682629, tablet comprising hydroxymethylcellulose and gas-generating system 1999.
  • Galenix -Minextab Floating, http://www.galenix.fr/drug-delivery-solutions/minextab-floating.html. Accessed September 16, 2014.
  • Salix pipeline, http://www.salix.com/about-us/pharmaceutical-research-development/drug-pipeline.aspx. Accessed September 16, 2014.
  • Chih-Ming C, inventor WO 9640080, Controlled release formulation having a preformed passageway. 1995.
  • Malaterre V, Ogorka J, Loggia N, et al. Oral osmotically driven systems: 30 years of development and clinical use. Eur J Pharm Biopharm. 2009 Nov;73(3):311–323.
  • Tiwari SB, DiNunzio J, Rajabi-Siahboomi A. Chapter 7. Drug–polymer matrices for extended release. In: Wilson CG, ed. Controlled release in oral drug delivery. 2011.
  • Skalsky B, Stegemann S. Chapter 13. Coated multiparticulates for controlling drug release. In: Wilson CG, ed. Controlled release in oral drug delivery. 2011.
  • Gastro-retentive drug delivery technology - Skyepharma, http://www.skyepharma.com/Technologies/Oral_drug_delivery_technologies/Gastro_retentive_technology/Default.aspx?id=78. Accessed September 29, 2014.
  • Skyepharma.com. Madopar DR, http://www.skyepharma.com/Products/Oral_products/Approved_oral_products/Madopar_DR/Default.aspx?id=149. Accessed January 5, 2015.
  • Gao P, Nie X, Zou M, et al. Recent advances in materials for extended-release antibiotic delivery system. J Antibiot (Tokyo). 2011 Sep;64(9):625–634.
  • COREG CR - FDA label, http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Label_ApprovalHistory#labelinfo. Accessed September 25, 2014.
  • Sampat NG, Kulkarni RV, Sase N, et al. Once daily baclofen sustained release or gastro-retentive system are acceptable alternatives to thrice daily baclofen immediate release at same daily dosage in patients. Neurol India. 2009;57(3):295–299.
  • Bussemer T, Otto I, Bodmeier R. Pulsatile drug-delivery systems. Crit Rev Ther Drug Carrier Syst. 2001;18(5):433–458.
  • Drugs@FDA. Moxatag. http://wwwaccessdatafdagov/scripts/cder/drugsatfda/indexcfm?fuseaction=SearchLabel_ApprovalHistory#labelinfo Access January 3, 2015.
  • How Pulsys Products Work. http://media.corporate-ir.net/media_files/irol/14/147309/pdf/pulsysproducts.pdf. Accessed November 6, 2014.
  • MiddleBrook Pharmaceuticals corporate fact sheet 2009. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=0CFkQFjAJ&url=http%3A%2F%2Fphx.corporate-ir.net%2FExternal.File%3Fitem%3DUGFyZW50SUQ9MzQ4NTc3fENoaWxkSUQ9MzM3NDk0fFR5cGU9MQ%3D%3D%26t%3D1&ei=JslGVLLHGfHLsATVtoD4CQ&usg=AFQjCNGUhjG5KrjP0SK0tYC-bQDu93fsKQ&sig2=hhpZs9sH4_1g3MDWp5YPcQ. Accessed October 21, 2014.
  • Yewale C, Patil S, Kolate A, et al. Oral absorption promoters: opportunities, issues, and challenges. Crit Rev Ther Drug Carrier Syst. 2015;32(5):363–387.
  • Aungst BJ. Absorption enhancers: applications and advances. Aaps J. 2012 Mar;14(1):10–18.
  • Neoral FDA label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2002/50715s10s14lbl.pdf. Accessed August 13, 2017.
  • Aguirre TA, Teijeiro-Osorio D, Rosa M, et al. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev. 2016 Nov 15;106(Pt B):223–241.
  • McCartney F, Gleeson JP, Brayden DJ. Safety concerns over the use of intestinal permeation enhancers: a mini-review. Tissue Barriers. 2016;Apr-Jun;4(2:e1176822.
  • Moroz E, Matoori S, Leroux JC. Oral delivery of macromolecular drugs: where we are after almost 100years of attempts. Adv Drug Deliv Rev. 2016 Jun 01;101:108–121.
  • Coffin MD, Burke MD. Chapter 17. Controlling release by gastroretention. In: Wilson CG, ed. Controlled release in oral drug delivery. New york, USA. 2011.
  • Wen H, Park K. Chapter 1. Introduction and overview of oral controlled release formulation design. In: Wen H, Park K, eds. Oral controlled release formulation design and drug delivery. Danvers, MA. 2010.
  • Zur M, Cohen N, Agbaria R, et al. The biopharmaceutics of successful controlled release drug product: segmental-dependent permeability of glipizide vs metoprolol throughout the intestinal tract. Int J Pharm. 2015 Jul 15;489(1–2):304–310.
  • Prior DV, Connor AL, Wilding IR. Chapter 24. The enterion capsule. In: Rathbone MJ, Hadgraft J, Roberts MS, eds.. Modified-release drug delivery technology. Marcel Dekker, Inc.; New york, USA. 2002.
  • Shimizu J, Wanke C. IntelliCap: an intelligent, electronic capsule for oral drug delivery & development. Drug Dev Deliv. 2013;13(3). [cited 2017 Oct 11]. Available from: http://drug-dev.com/Main/Back-Issues/ADVANCED-DELIVERY-DEVICES-IntelliCap-An-Intelligen-557.aspx.
  • Fairstein M, Swissa R, Dahan A. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine. Aaps J. 2013 Apr;15(2):589–597.
  • Dahan A, Miller JM, Hilfinger JM, et al. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations. Mol Pharm. 2010 Oct 04;7(5):1827–1834.
  • Zur M, Hanson AS, Dahan A. The complexity of intestinal permeability: assigning the correct BCS classification through careful data interpretation. Eur J Pharm Sci. 2014 Sep;30(61):11–17.
  • Zur M, Gasparini M, Wolk O, et al. The low/high BCS permeability class boundary: physicochemical comparison of metoprolol and labetalol. Mol Pharm. 2014 May 05;11(5):1707–1714.
  • Lozoya-Agullo I, Zur M, Beig A, et al. Segmental-dependent permeability throughout the small intestine following oral drug administration: single-pass vs. Doluisio approach to in-situ rat perfusion. Int J Pharm. 2016 Dec 30;515(1–2):201–208.
  • Klausner EA, Lavy E, Barta M, et al. Novel gastroretentive dosage forms: evaluation of gastroretentivity and its effect on levodopa absorption in humans. Pharm Res. 2003 Sep;20(9):1466–1473.
  • Kagan L, Hoffman A. Selection of drug candidates for gastroretentive dosage forms: pharmacokinetics following continuous intragastric mode of administration in a rat model. Eur J Pharm Biopharm. 2008 May;69(1):238–246.
  • Klausner EA, Eyal S, Lavy E, et al. Novel levodopa gastroretentive dosage form: in-vivo evaluation in dogs. J Cont Release. 2003 Feb 14;88(1):117–126.
  • Davis SS, Illum L, Hinchcliffe M. Gastrointestinal transit of dosage forms in the pig. J Pharm Pharmacol. 2001 Jan;53(1):33–39.
  • Razavi M, Karimian H, Yeong CH, et al. Gamma scintigraphic study of the hydrodynamically balanced matrix tablets of Metformin HCl in rabbits. Drug Des Devel Ther. 2015;9:3125–3139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.