386
Views
1
CrossRef citations to date
0
Altmetric
Review

Nanomedicine for immunosuppressive therapy: achievements in pre-clinical and clinical research

, , &
Pages 397-418 | Received 02 Jun 2017, Accepted 18 Dec 2017, Published online: 01 Jan 2018

References

  • Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–480.
  • Choonara BF, Choonara YE, Kumar P, et al. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv. 2014;32(7):1269–1282.
  • Corsini A, Bortolini M. Drug-induced liver injury: the role of drug metabolism and transport. J Clin Pharmacol. 2013;53(5):463–474.
  • Aliabadi HM, Shahin M, Brocks DR, et al. Disposition of drugs in block copolymer micelle delivery systems: from discovery to recovery. Clin Pharmacokinet. 2008;47(10):619–634.
  • Krishna R, Mayer LD. Modulation of P-glycoprotein (PGP) mediated multidrug resistance (MDR) using chemosensitizers: recent advances in the design of selective MDR modulators. Curr Med Chem Anticancer Agents. 2001;1(2):163–174.
  • Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–79.
  • Siew A, Le H, Thiovolet M, et al. Enhanced oral absorption of hydrophobic and hydrophilic drugs using quaternary ammonium palmitoyl glycol chitosan nanoparticles. Mol Pharm. 2012;9(1):14–28.
  • Gharagozloo M, Majewski S, Foldvari M. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction. Nanomedicine. 2015;11(4):1003–1018.
  • Merrill JP, Murray JE, Harrison JH, et al. Successful homotransplantation of the human kidney between identical twins. J Am Med Assoc. 1956;160(4):277–282.
  • Monguio-Tortajada M, Lauzurica-Valdemoros R, Borras FE. Tolerance in organ transplantation: from conventional immunosuppression to extracellular vesicles. Front Immunol. 2014;5:416.
  • Zarkhin V, Sarwal MM. The coin toss of B cells in rejection and tolerance: danger versus defense. Semin Immunol. 2012;24(2):86–91.
  • Smith DA, Germolec DR. Introduction to immunology and autoimmunity. Environ Health Perspect. 1999;107(Suppl 5):661–665.
  • Street NE, Mosmann TR. Functional diversity of T lymphocytes due to secretion of different cytokine patterns. Faseb J. 1991;5(2):171–177.
  • Mosmann TR, Schumacher JH, Street NF, et al. Diversity of cytokine synthesis and function of mouse CD4+ T cells. Immunol Rev. 1991;123:209–229.
  • Korczowska I. Rheumatoid arthritis susceptibility genes: an overview. World J Orthop. 2014;5(4):544–549.
  • Okada Y, Wu D, Trynka G, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–381.
  • Hunt L, Emery P. Defining populations at risk of rheumatoid arthritis: the first steps to prevention. Nat Rev Rheumatol. 2014;10(9):521–530.
  • Blyth T, Hunter JA, Stirling A. Pain relief in the rheumatoid knee after steroid injection. A single-blind comparison of hydrocortisone succinate, and triamcinolone acetonide or hexacetonide. Br J Rheumatol. 1994;33(5):461–463.
  • Ye J, Wang Q, Zhou X, et al. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int J Pharm. 2008;352(1–2):273–279.
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–651.
  • Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115–1118.
  • Hooper LV, Wong MH, Thelin A, et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291(5505):881–884.
  • Meissner Y, Pellequer Y, Lamprecht A. Nanoparticles in inflammatory bowel disease: particle targeting versus pH-sensitive delivery. Int J Pharm. 2006;316(1–2):138–143.
  • Cui F, Qian F, Yin C. Preparation and characterization of mucoadhesive polymer-coated nanoparticles. Int J Pharm. 2006;316(1–2):154–161.
  • Yang R, Shim W-S, Cui F-D, et al. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int J Pharm. 2009;371(1–2):142–147.
  • Lamprecht A, Schafer U, Lehr CM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res. 2001;18(6):788–793.
  • Krishnaiah YS, Satyanarayana V, Dinesh Kumar B, et al. In vivo pharmacokinetics in human volunteers: oral administered guar gum-based colon-targeted 5-fluorouracil tablets. Eur J Pharm Sci. 2003;19(5):355–362.
  • Pouwels SD, Heijink IH, Ten Hacken NHT, et al. DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol. 2014;7(2):215–226.
  • Willis L, Hayes Jr. D, Mansour HM. Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung. 2012;190(3):251–262.
  • Chougule M, Padhi B, Misra A. Nano-liposomal dry powder inhaler of tacrolimus: preparation, characterization, and pulmonary pharmacokinetics. Int J Nanomedicine. 2007;2(4):675–688.
  • Behr J, Zimmermann G, Baumgartner R, et al. Lung deposition of a liposomal cyclosporine A inhalation solution in patients after lung transplantation. J Aerosol Med Pulm Drug Deliv. 2009;22(2):121–130.
  • Drewe J, Beglinger C, Kissel T. The absorption site of cyclosporin in the human gastrointestinal tract. Br J Clin Pharmacol. 1992;33(1):39–43.
  • Lallemand F, Felt-Baeyens O, Besseghir K, et al. Cyclosporine A delivery to the eye: a pharmaceutical challenge. Eur J Pharm Biopharm. 2003;56(3):307–318.
  • Gomes Bittencourt M, Sepah YJ, Do DV, et al. New treatment options for noninfectious uveitis. Dev Ophthalmol. 2012;51:134–161.
  • Wang J, Jiang A, Joshi M, et al. Drug delivery implants in the treatment of vitreous inflammation. Mediators Inflamm. 2013;2013:1–8.
  • Beardsley RM, Suhler EB, Rosenbaum JT, et al. Pharmacotherapy of scleritis: current paradigms and future directions. Expert Opin Pharmacother. 2013;14(4):411–424.
  • Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–1681.
  • Zolnik BS, González-Fernández A, Sadrieh N, et al. Nanoparticles and the immune system. Endocrinology. 2010;151(2):458–465.
  • Pallardy MJ, Turbica I, Biola-Vidamment A. Why the immune system should be concerned by nanomaterials? Front Immunol. 2017;8:544.
  • Liu H, Wang Y, Li S. Advanced delivery of ciclosporin A: present state and perspective. Expert Opin Drug Deliv. 2007;4(4):349–358.
  • Von Wartburg A, Traber R. Chemistry of the natural cyclosporin metabolites. In: Borel J.F. (ed). Ciclosporin. Basel: Karger; 1986. p. 28–45.
  • Beauchesne PR, Chung NS, Wasan KM. Cyclosporine A: a review of current oral and intravenous delivery systems. Drug Dev Ind Pharm. 2007;3(211–220):33.
  • Noble S, Markham A. Cyclosporin. A review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (Neoral). Drugs. 1995;50(5):924–941.
  • Venkataramanan R, Starzl TE, Yang S, et al. Biliary excretion of cyclosporine in liver transplant patients. Transplant Proc. 1985;17(1):286–289.
  • Bleck, J.S., Schlitt HJ, Christians U, et al. Urinary excretion of ciclosporin and 17 of its metabolites in renal allograft recipients. Pharmacolog. 1989;39(3):160–164.
  • Kahan, B.D., Keown P, Levy G, et al. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther. 2002;24(3):330–350.
  • Kahan BD. Therapeutic drug monitoring of cyclosporine: 20 years of progress. Transplant Proc. 2004;36(Suppl 25):378S–391S.
  • Thompson ME, Shapiro AP, Johnsen AM, et al. The contrasting effects of cyclosporin-A and azathioprine on arterial blood pressure and renal function following cardiac transplantation. Int J Cardiol. 1986;11(2):219–229.
  • Vader P, Fens MH, Sachini N, et al. Taxol(®)-induced phosphatidylserine exposure and microvesicle formation in red blood cells is mediated by its vehicle Cremophor(®) EL. Nanomedicine (Lond). 2013;8(7):1127–1135.
  • Aliabadi HM, Elhasi S, Brocks DR, et al. Polymeric micellar delivery reduces kidney distribution and nephrotoxic effects of cyclosporine A after multiple dosing. J Pharm Sci. 2008;97(5):1916–1926.
  • Italia JL, Bhatt DK, Bhardwaj V, et al. PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral. J Control Release. 2007;119(2):197–206.
  • Ankola DD, Wadsworth RM, Ravi Kumar MN. Nanoparticulate delivery can improve peroral bioavailability of cyclosporine and match Neoral Cmax sparing the kidney from damage. J Biomed Nanotechnol. 2011;7(2):300–307.
  • Aliabadi HM, Mahmud A, Sharifabadi AD, et al. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. J Control Release. 2005;104(2):301–311.
  • Aliabadi HM, Elhasi S, Mahmud A, et al. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int J Pharm. 2007;329(1–2):158–165.
  • Aliabadi HM, Brocks DR, Lavasanifar A. Polymeric micelles for the solubilization and delivery of cyclosporine A: pharmacokinetics and biodistribution. Biomaterials. 2005;26(35):7251–7259.
  • Hamdy S, Haddadi A, Shayeganpour A, et al. The immunosuppressive activity of polymeric micellar formulation of cyclosporine A: in vitro and in vivo studies. Aaps J. 2011;13(2):159–168.
  • Mondon K, Zeisser-Labouèbe M, Gurny R, et al. Novel cyclosporin A formulations using MPEG-hexyl-substituted polylactide micelles: a suitability study. Eur J Pharm Biopharm. 2011;77(1):56–65.
  • Zhang L, Zhao Z-L, Wei X-H, et al. Preparation and in vitro and in vivo characterization of cyclosporin A-loaded, PEGylated chitosan-modified, lipid-based nanoparticles. Int J Nanomedicine. 2013;8:601–610.
  • Wang K, Qi J, Weng T, et al. Enhancement of oral bioavailability of cyclosporine A: comparison of various nanoscale drug-delivery systems. Int J Nanomedicine. 2014;9:4991–4999.
  • Guada M, Lasa-Saracíbar B, Lana H, et al. Lipid nanoparticles enhance the absorption of cyclosporine A through the gastrointestinal barrier: in vitro and in vivo studies. Int J Pharm. 2016;500(1–2):154–161.
  • Wang X-Q, Dai J-D, Chen Z, et al. Bioavailability and pharmacokinetics of cyclosporine A-loaded pH-sensitive nanoparticles for oral administration. J Control Release. 2004;97(3):421–429.
  • Dai J, Nagai T, Wang X, et al. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int J Pharm. 2004;280(1–2):229–240.
  • Aksungur P, Demirbilek M, Denkbaş EB, et al. Development and characterization of cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release. 2011;151(3):286–294.
  • Yenice I, Mocan MC, Palaska E, et al. Hyaluronic acid coated poly-epsilon-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Exp Eye Res. 2008;87(3):162–167.
  • De Campos AM, Sánchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224(1–2):159–168.
  • Başaran E, Yenilmez E, Berkman MS, et al. Chitosan nanoparticles for ocular delivery of cyclosporine A. J Microencapsul. 2014;31(1):49–57.
  • Liu S, Chang CN, Verma MS, et al. Phenylboronic acid modified mucoadhesive nanoparticle drug carriers facilitate weekly treatment of experimentally-induced dry eye syndrome. Nano Res. 2015;8(2):621–635.
  • Di Tommaso C, Bourges J-L, Valamanesh F, et al. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Eur J Pharm Biopharm. 2012;81(2):257–264.
  • Bourges JL, Lallemand F, Agla E, et al. Evaluation of a topical cyclosporine A prodrug on corneal graft rejection in rats. Mol Vis. 2006;12:1461–1466.
  • Gokce EH, Sandri G, Bonferoni MC, et al. Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm. 2008;364(1):76–86.
  • Gökçe EH, Sandri G, Eğrilmez S, et al. Cyclosporine a-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Curr Eye Res. 2009;34(11):996–1003.
  • Kim ST, Jang D-J, Kim JH, et al. Topical administration of cyclosporin A in a solid lipid nanoparticle formulation. Pharmazie. 2009;64(8):510–514.
  • Karavana SY, Gökçe EH, Rençber S, et al. A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations. Int J Nanomedicine. 2012;7:5693–5704.
  • Zhai J, Gu J, Yuan J, et al. Tacrolimus in the treatment of ocular diseases. BioDrugs. 2011;25(2):89–103.
  • Friemann S, Feuring E, Padberg W, et al. Improvement of nephrotoxicity, hypertension, and lipid metabolism after conversion of kidney transplant recipients from cyclosporine to tacrolimus. Transplant Proc. 1998;30(4):1240–1242.
  • Ligtenberg G, Hené RJ, Blankestijn PJ, et al. Cardiovascular risk factors in renal transplant patients: cyclosporin A versus tacrolimus. J Am Soc Nephrol. 2001;12(2):368–373.
  • Textor SC, Wiesner R, Wilson DJ, et al. Systemic and renal hemodynamic differences between FK506 and cyclosporine in liver transplant recipients. Transplantation. 1993;55(6):1332–1339.
  • Vincenti F, Jensik SC, Filo RS, et al. A long-term comparison of tacrolimus (FK506) and cyclosporine in kidney transplantation: evidence for improved allograft survival at five years. Transplantation. 2002;73(5):775–782.
  • Scott LJ, McKeage K, Keam SJ, et al. Tacrolimus: a further update of its use in the management of organ transplantation. Drugs. 2003;63(12):1247–1297.
  • Christians U, Pokaiyavanichkul T, Chan L. Tacrolimus. In: Burton ME. (ed). Applied pharmacokinetics and pharmacodynamics: principles of therapeutic drug monitoring. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 529–562.
  • Van Gelder T. Drug interactions with tacrolimus. Drug Saf. 2002;25(10):707–712.
  • Tamura S, Ohike A, Ibuki R, et al. Tacrolimus is a class II low-solubility high-permeability drug: the effect of P-glycoprotein efflux on regional permeability of tacrolimus in rats. J Pharm Sci. 2002;91(3):719–729.
  • Thao Le Q, Byeon HJ, Lee C, et al. Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int J Pharm. 2016;497(1–2):268–276.
  • Gao S, Sun J, Fu D, et al. Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-β-cyclodextrin inclusion complex-loaded albumin nanoparticles. Int J Pharm. 2012;427(2):410–416.
  • Zhao L, Zhou Y, Gao Y, et al. Bovine serum albumin nanoparticles for delivery of tacrolimus to reduce its kidney uptake and functional nephrotoxicity. Int J Pharm. 2015;483(1–2):180–187.
  • Allen C, Eisenberg A, Mrsic J, et al. PCL-b-PEO micelles as a delivery vehicle for FK506: assessment of a functional recovery of crushed peripheral nerve. Drug Deliv. 2000;7(3):139–145.
  • Wang Y, Wang C, Wang Y, et al. Micelles of methoxy poly(ethylene glycol)-poly(epsilon-caprolactone) as a novel drug delivery vehicle for tacrolimus. J Biomed Nanotechnol. 2013;9(2):147–157.
  • Borhade V, Nair H, Hegde D. Design and evaluation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus. AAPS PharmSciTech. 2008;9(1):13–21.
  • Von Suesskind-Schwendi M, Gruber M, Touraud D, et al. Pharmacokinetics of a self-microemulsifying drug delivery system of tacrolimus. Biomed Pharmacother. 2013;67(6):469–473.
  • Wang Y, Sun J, Zhang T, et al. Enhanced oral bioavailability of tacrolimus in rats by self-microemulsifying drug delivery systems. Drug Dev Ind Pharm. 2011;37(10):1225–1230.
  • Lamprecht A, Yamamoto H, Takeuchi H, et al. A pH-sensitive microsphere system for the colon delivery of tacrolimus containing nanoparticles. J Control Release. 2005;104(2):337–346.
  • Sudhakar CK, Nitish U, Sanjay J, et al. Ethosomes as non-invasive loom for transdermal drug delivery. In: Sebastian M., Ninan N., Haghi AK editors Nanomedicine and drug delivery. San Diego: Apple Academic press. 2012;1, p. 1–16.
  • Li G, Fan Y, Fan C, et al. Tacrolimus-loaded ethosomes: physicochemical characterization and in vivo evaluation. Eur J Pharm Biopharm. 2012;82(1):49–57.
  • Erdogan M, Wright JR Jr., McAlister VC. Liposomal tacrolimus lotion as a novel topical agent for treatment of immune-mediated skin disorders: experimental studies in a murine model. Br J Dermatol. 2002;146(6):964–967.
  • Seo J, Lee C, Hwang HS, et al. Therapeutic advantage of inhaled tacrolimus-bound albumin nanoparticles in a bleomycin-induced pulmonary fibrosis mouse model. Pulm Pharmacol Ther. 2016;36:53–61.
  • Kasim NA, Whitehouse M, Ramachandran C, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004;1(1):85–96.
  • Van Roon EN, Van de Laar MA. Methotrexate bioavailability. Clin Exp Rheumatol. 2010;28(5 Suppl 61):S27–S32.
  • Bianchi G, Caporali R, Todoerti M, et al. Methotrexate and rheumatoid arthritis: current evidence regarding subcutaneous versus oral routes of administration. Adv Ther. 2016;33(3):369–378.
  • Pichlmeier U, Heuer K-U. Subcutaneous administration of methotrexate with a prefilled autoinjector pen results in a higher relative bioavailability compared with oral administration of methotrexate. Clin Exp Rheumatol. 2014;32(4):563–571.
  • Edno, L., Bressolle F, Gomeni R, et al. Total and free methotrexate pharmacokinetics in rheumatoid arthritis patients. Ther Drug Monit. 1996;18(2):128–134.
  • Inc., P.C. Pr METHOTREXATE. 2015 cited 2016 Jun 11; Available from: http://www.pfizer.ca/sites/g/files/g10028126/f/201511/Methotrexate_PM_E.pdf
  • Abolmaali SS, Tamaddon AM, Dinarvand R. A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother Pharmacol. 2013;71(5):1115–1130.
  • Garg NK, Singh B, Jain A, et al. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloids Surf B Biointerfaces. 2016;146:114–126.
  • Amarji B, Garg NK, Singh B, et al. Microemulsions mediated effective delivery of methotrexate hydrogel: more than a tour de force in psoriasis therapeutics. J Drug Target. 2016;24(2):147–160.
  • Ruckmani K, Sivakumar M, Ganeshkumar PA. Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma. J Nanosci Nanotechnol. 2006;6(9–10):2991–2995.
  • Chen Y, Sha X, Zhang W, et al. Pluronic mixed micelles overcoming methotrexate multidrug resistance: in vitro and in vivo evaluation. Int J Nanomedicine. 2013;8:1463–1476.
  • Williams AS, Camilleri JP, Amos N, et al. Differential effects of methotrexate and liposomally conjugated methotrexate in rat adjuvant-induced arthritis. Clin Exp Immunol. 1995;102(3):560–565.
  • Gottschalk O, Metz P, Dao Trong ML, et al. Therapeutic effect of methotrexate encapsulated in cationic liposomes (EndoMTX) in comparison to free methotrexate in an antigen-induced arthritis study in vivo. Scand J Rheumatol. 2015;44(6):456–463.
  • Hong MS, Lim SJ, Lee MK, et al. Prolonged blood circulation of methotrexate by modulation of liposomal composition. Drug Deliv. 2001;8(4):231–237.
  • Prabhu P, Shetty R, Koland M, et al. Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. Int J Nanomedicine. 2012;7:177–186.
  • Wunder A, Müller-Ladner U, Stelzer EHK, et al. Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol. 2003;170(9):4793–4801.
  • Hartung G, Stehle G, Sinn H, et al. Phase I trial of methotrexate-albumin in a weekly intravenous bolus regimen in cancer patients. Phase I study group of the Association for Medical Oncology of the German Cancer Society. Clin Cancer Res. 1999;5(4):753–759.
  • Azmin MN, Florence AT, Handjani-Vila RM, et al. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol. 1985;37(4):237–242.
  • Misra A, Kalariya M, Padhi BK, et al. Methotrexate-loaded solid lipid nanoparticles for topical treatment of psoriasis: formulation and clinical implications. Drug Del Tech. 2004;4:1–12.
  • Doddoli C, Ghez O, Barlési F, et al. In vitro and in vivo methotrexate disposition in alveolar macrophages: comparison of pharmacokinetic parameters of two formulations. Int J Pharm. 2005;297(1–2):180–189.
  • Smith SL. Immunosuppressive therapies in organ transplantation. Organ transplant, 2002.
  • Derendorf H, Hochhaus GN. Handbook of pharmacokinetic/pharmacodynamic correlation. Boca Raton: CRC Press; 1995. p. 483.
  • Czock D, Keller F, Rasche FM, et al. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44(1):61–98.
  • Saag KG, Koehnke R, Caldwell JR, et al. Low dose long-term corticosteroid therapy in rheumatoid arthritis: an analysis of serious adverse events. Am J Med. 1994;96(2):115–123.
  • Di Cagno M, Luppi B. Drug “supersaturation” states induced by polymeric micelles and liposomes: a mechanistic investigation into permeability enhancements. Eur J Pharm Sci. 2013;48(4–5):775–780.
  • Lobatto ME, Calcagno C, Otten MJ, et al. Pharmaceutical development and preclinical evaluation of a GMP-grade anti-inflammatory nanotherapy. Nanomedicine. 2015;11(5):1133–1140.
  • Quan L, Zhang Y, Crielaard BJ, et al. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano. 2014;8(1):458–466.
  • Moallem E, Koren E, Ulmansky R, et al. A liposomal steroid nano-drug for treating systemic lupus erythematosus. Lupus. 2016;25(11):1209–1216.
  • Hosseini SH, Maleki A, Eshraghi HR, et al. Preparation and in vitro/pharmacokinetic/pharmacodynamic evaluation of a slow-release nano-liposomal form of prednisolone. Drug Deliv. 2016;23(8):3008–3016.
  • Kenyon NJ, Bratt JM, Lee J, et al. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS One. 2013;8(10):e77730.
  • Patel S, Garapati C, Chowdhury P, et al. Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application. J Ocul Pharmacol Ther. 2015;31(4):215–227.
  • Pan Q, Xu Q, Boylan NJ, et al. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J Control Release. 2015;201:32–40.
  • Ali HSM, York P, Ali AMA, et al. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release. 2011;149(2):175–181.
  • Konduri KS, Nandedkar S, Düzgünes N, et al. Efficacy of liposomal budesonide in experimental asthma. J Allergy Clin Immunol. 2003;111(2):321–327.
  • Sun C, Wang X, Zheng Z, et al. A single dose of dexamethasone encapsulated in polyethylene glycol-coated polylactic acid nanoparticles attenuates cisplatin-induced hearing loss following round window membrane administration. Int J Nanomedicine. 2015;10:3567–3579.
  • El Kechai N, Mamelle E, Nguyen Y, et al. Hyaluronic acid liposomal gel sustains delivery of a corticoid to the inner ear. J Control Release. 2016;226:248–257.
  • Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet. 2001;40(8):573–585.
  • Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc. 2003;35(3 Suppl):7S–14S.
  • Merkel S, Mogilevskaja N, Mengel M, et al. Side effects of sirolimus. Transplant Proc. 2006;38(3):714–715.
  • Shen L-J, Wu F-L-L. Nanomedicines in renal transplant rejection--focus on sirolimus. Int J Nanomedicine. 2007;2(1):25–32.
  • Haeri A, Sadeghian S, Rabbani S, et al. Sirolimus-loaded stealth colloidal systems attenuate neointimal hyperplasia after balloon injury: a comparison of phospholipid micelles and liposomes. Int J Pharm. 2013;455(1–2):320–330.
  • Matsuzaki T, Matsushita T, Tabata Y, et al. Intra-articular administration of gelatin hydrogels incorporating rapamycin-micelles reduces the development of experimental osteoarthritis in a murine model. Biomaterials. 2014;35(37):9904–9911.
  • Katiyar SS, Muntimadugu E, Rafeeqi TA, et al. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv. 2016;23(7):2608–2616.
  • Shirasu T, Koyama H, Miura Y, et al. Nanoparticles effectively target rapamycin delivery to sites of experimental aortic aneurysm in rats. PLoS One. 2016;11(6):e0157813.
  • Maldonado RA, LaMothe RA, Ferrari JD, et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci U S A. 2015;112(2):E156–E165.
  • Khondee S, Rabinsky EF, Owens SR, et al. Targeted therapy of colorectal neoplasia with rapamycin in peptide-labeled pegylated octadecyl lithocholate micelles. J Control Release. 2015;199:114–121.
  • Zhao Y, Zhang T, Duan S, et al. CD44-tropic polymeric nanocarrier for breast cancer targeted rapamycin chemotherapy. Nanomedicine. 2014;10(6):1221–1230.
  • Shi X, Chen G, Guo L-W, et al. Periadventitial application of rapamycin-loaded nanoparticles produces sustained inhibition of vascular restenosis. PLoS One. 2014;9(2):e89227.
  • Ono K, Sato T, Iyama S, et al. A novel strategy inducing autophagic cell death in Burkitt’s lymphoma cells with anti-CD19-targeted liposomal rapamycin. Blood Cancer J. 2014;4:e180.
  • Gonzalez-Angulo AM, Meric-Bernstam F, Chawla S, et al. Weekly nab-Rapamycin in patients with advanced nonhematologic malignancies: final results of a phase I trial. Clin Cancer Res. 2013;19(19):5474–5484.
  • Gasper WJ, Jimenez CA, Walker J, et al. Adventitial nab-rapamycin injection reduces porcine femoral artery luminal stenosis induced by balloon angioplasty via inhibition of medial proliferation and adventitial inflammation. Circ Cardiovasc Interv. 2013;6(6):701–709.
  • Shah M, Edman MC, Janga SR, et al. A rapamycin-binding protein polymer nanoparticle shows potent therapeutic activity in suppressing autoimmune dacryoadenitis in a mouse model of Sjögren’s syndrome. J Control Release. 2013;171(3):269–279.
  • Yáñez JA, Forrest ML, Ohgami Y, et al. Pharmacometrics and delivery of novel nanoformulated PEG-b-poly(epsilon-caprolactone) micelles of rapamycin. Cancer Chemother Pharmacol. 2008;61(1):133–144.
  • Dou Y, Guo J, Chen Y, et al. Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice. J Control Release. 2016;235:48–62.
  • Haddadi A, Elamanchili P, Lavasanifar A, et al. Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J Biomed Mater Res A. 2008;84(4):885–898.
  • Yu Q, Hu X, Ma Y, et al. Lipids-based nanostructured lipid carriers (NLCs) for improved oral bioavailability of sirolimus. Drug Deliv. 2016;23(4):1469–1475.
  • Cho W, Kim M-S, Kim J-S, et al. Optimized formulation of solid self-microemulsifying sirolimus delivery systems. Int J Nanomedicine. 2013;8:1673–1682.
  • Hu X, Lin C, Chen D, et al. Sirolimus solid self-microemulsifying pellets: formulation development, characterization and bioavailability evaluation. Int J Pharm. 2012;438(1–2):123–133.
  • Bisht S, Feldmann G, Koorstra J-BM, et al. In vivo characterization of a polymeric nanoparticle platform with potential oral drug delivery capabilities. Mol Cancer Ther. 2008;7(12):3878–3888.
  • Solymosi T, Angi R, Basa-Dénes O, et al. Sirolimus formulation with improved pharmacokinetic properties produced by a continuous flow method. Eur J Pharm Biopharm. 2015;94:135–140.
  • Kim M-S, Kim J-S, Park HJ, et al. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int J Nanomedicine. 2011;6:2997–3009.
  • Kim M-S, Kim J-S, Cho WK, et al. Enhanced solubility and oral absorption of sirolimus using D-α-tocopheryl polyethylene glycol succinate micelles. Artif Cells Nanomed Biotechnol. 2013;41(2):85–91.
  • Yuan X-B, Yuan Y-B, Jiang W, et al. Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm. 2008;349(1–2):241–248.
  • Linares-Alba MA, Gómez-Guajardo MB, Fonzar JF, et al. Preformulation studies of a liposomal formulation containing sirolimus for the treatment of dry eye disease. J Ocul Pharmacol Ther. 2016;32(1):11–22.
  • Wu W, He Z, Zhang Z, et al. Intravitreal injection of rapamycin-loaded polymeric micelles for inhibition of ocular inflammation in rat model. Int J Pharm. 2016;513(1–2):238–246.
  • Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus. 2005;14(Suppl 1):s2–s8.
  • Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58.
  • Atcheson BA, Taylor PJ, Mudge DW, et al. Mycophenolic acid pharmacokinetics and related outcomes early after renal transplant. Br J Clin Pharmacol. 2005;59(3):271–280.
  • Look M, Stern E, Wang QA, et al. Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice. J Clin Invest. 2013;123(4):1741–1749.
  • Look M, Saltzman WM, Craft J, et al. The nanomaterial-dependent modulation of dendritic cells and its potential influence on therapeutic immunosuppression in lupus. Biomaterials. 2014;35(3):1089–1095.
  • Shirali AC, Look M, Du W, et al. Nanoparticle delivery of mycophenolic acid upregulates PD-L1 on dendritic cells to prolong murine allograft survival. Am J Transplant. 2011;11(12):2582–2592.
  • Teng J, Zang L, Li L, et al. Overall condition improvement in a rat model of nephrotic syndrome treated with CellCept nanoliposomes. Artif Cells Nanomed Biotechnol. 2017;45(1):128–134.
  • Schmid O, Jud C, Umehara Y, et al. Biokinetics of aerosolized liposomal ciclosporin a in human lung cells in vitro using an air-liquid cell interface exposure system. J Aerosol Med Pulm Drug Deliv. 2017;30:411–424.
  • Iacono A., Terrin M., Rajakopa K., et al. A single center, randomized, open-label, controlled pilot study to demonstrate efficacy and safety of the addition of inhaled liposomal cyclosporine (L-CSA) therapy versus standard therapy alone in the treatment of bronchiolitis obliterans syndrome (BOS) following lung transplantation. J Heart Lung Transplant. 2016;35(4):S44–S45.
  • Ali SM, Ahmad A, Sheikh S, et al. Polyoxyl 60 hydrogenated castor oil free nanosomal formulation of immunosuppressant tacrolimus: pharmacokinetics, safety, and tolerability in rodents and humans. Int Immunopharmacol. 2010;10(3):325–330.
  • Van der Valk FM, Van Wijk DF, Lobatto ME, et al. Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration. Nanomedicine. 2015;11(5):1039–1046.
  • Barrera P, Mulder S, Smetsers A, et al. Long-circulating liposomal prednisolone versus pulse intramuscular methylprednisolone in patients with active rheumatoid arthritis. [Abstract]. Proceedings of the American College of Rheumatology (ACR) Scientific Meeting, 27 October 2008, San Francisco, Abstract L-10.
  • van Assche, G., Rutgeerts P., Ferrante M, et al. Safety and efficacy of a novel IV targeted pegylated liposomal prednisolone product (Nanocort): results from a phase 2a study in patients with active ulcerative colitis. J Crohns & Colitis. 2016;10:S39–S40. Elsevier Science BV.
  • Van der Valk FM, Schulte DM, Meiler S, et al. Liposomal prednisolone promotes macrophage lipotoxicity in experimental atherosclerosis. Nanomedicine. 2016;12(6):1463–1470.
  • Kishimoto TK, Ferrari JD, LaMothe RA, et al. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat Nanotechnol. 2016;11(10):890–899.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.