1,268
Views
38
CrossRef citations to date
0
Altmetric
Review

Recent preclinical and clinical advances in oligonucleotide conjugates

, &
Pages 629-640 | Received 14 Feb 2018, Accepted 02 May 2018, Published online: 16 May 2018

References

  • Baumann V, Winkler J. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem. 2014;6(17):1967–1984.
  • Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016 Aug 19;44(14):6518–6548.
  • Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018 Feb 28;46(4):1584-1600.
  • Juliano R, Bauman J, Kang H, et al. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm. 2009 May-Jun;6(3):686–695.
  • Dirin M, Winkler J. Influence of diverse chemical modifications on the ADME characteristics and toxicology of antisense oligonucleotides. Expert Opin Biol Ther. 2013 Jun;13(6):875–888.
  • Geary RS, Norris D, Yu R, et al. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev. 2015 Jun;29(87):46–51.
  • Hvam ML, Cai Y, Dagnaes-Hansen F, et al. Fatty acid-modified gapmer antisense oligonucleotide and serum albumin constructs for pharmacokinetic modulation. Mol Ther. 2017 Jul 5;25(7):1710–1717.
  • Wang Y, Miao L, Satterlee A, et al. Delivery of oligonucleotides with lipid nanoparticles. Adv Drug Deliv Rev. 2015 Jun;29(87):68–80.
  • Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev. 2016 Apr 1;99(Pt A):129–137.
  • Crooke ST, Graham MJ, Zuckerman JE, et al. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J Pharmacol Exp Ther. 1996 May;277(2):923–937.
  • Bijsterbosch MK, Rump ET, De Vrueh RL, et al. Modulation of plasma protein binding and in vivo liver cell uptake of phosphorothioate oligodeoxynucleotides by cholesterol conjugation. Nucleic Acids Res. 2000 Jul 15;28(14):2717–2725.
  • Eckstein F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 2014 Dec;24(6):374–387.
  • Liang XH, Shen W, Sun H, et al. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2ʹ-modifications and enhances antisense activity. Nucleic Acids Res. 2016 May 5;44(8):3892–3907.
  • Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol Ther. 2017 May 3;25(5):1069–1075.
  • Wan WB, Migawa MT, Vasquez G, et al. Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages. Nucleic Acids Res. 2014 Dec 16;42(22):13456–13468.
  • Jahns H, Roos M, Imig J, et al. Stereochemical bias introduced during RNA synthesis modulates the activity of phosphorothioate siRNAs. Nat Commun. 2015 Mar;6(6):6317.
  • Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta. 1999 Dec 10;1489(1):141–158.
  • Stirchak EP, Summerton JE, Weller DD. Uncharged stereoregular nucleic acid analogs: 2. Morpholino nucleoside oligomers with carbamate internucleoside linkages. Nucleic Acids Res. 1989 Aug 11;17(15):6129–6141.
  • Nielsen PE, Egholm M, Berg RH, et al. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science (New York, NY). 1991 Dec 6;254(5037):1497–1500.
  • Alul R, Hoke GD (2ʹ-5ʹ)-Oligo-3ʹ-deoxynucleotides: selective binding to single-stranded RNA but not DNA. Antisense Res Dev. 1995 Spring;5(1):3–11.
  • Goyenvalle A, Griffith G, Babbs A, et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med. 2015 Mar;21(3):270–275.
  • Prakash TP. An overview of sugar-modified oligonucleotides for antisense therapeutics. Chem Biodivers. 2011 Sep;8(9):1616–1641.
  • Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017 Mar;35(3):238–248.
  • Bramsen JB, Laursen MB, Nielsen AF, et al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res. 2009 May;37(9):2867–2881.
  • Tluk S, Jurk M, Forsbach A, et al. Sequences derived from self-RNA containing certain natural modifications act as suppressors of RNA-mediated inflammatory immune responses. Int Immunol. 2009 May;21(5):607–619.
  • Cummins LL, Owens SR, Risen LM, et al. Characterization of fully 2ʹ-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res. 1995 Jun 11;23(11):2019–2024.
  • Teplova M, Minasov G, Tereshko V, et al. Crystal structure and improved antisense properties of 2ʹ-O-(2-methoxyethyl)-RNA. Nat Struct Biol. 1999 Jun;6(6):535–539.
  • Geary RS, Baker BF, Crooke ST. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (kynamro((R))): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. Clin Pharmacokinet. 2015 Feb;54(2):133–146.
  • Finkel R, Kuntz N, Mercuri E, et al. Primary efficacy and safety results from the phase 3 ENDEAR study of nusinersen in infants diagnosed with spinal muscular atrophy (SMA). Congress of the British Paediatric Neurology Association; 2017; Cambridge, UK: Biogen, Inc.; 2017.
  • Adams D, Gonzalez-Duarte A, O’Riordan W, et al. Patisiran, an investigational RNAi therapeutic for the treatment of hereditary ATTR amyloidosis with polyneuropathy: results from the phase 3 APOLLO study. EU ATTR Meeting; 2017; Paris, France: Alnylam Pharmaceuticals, Inc.; 2017.
  • Coelho T, Adams D, Silva A, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013 Aug 29;369(9):819–829.
  • Singh S, Nielsen P, Koshkin AA, et al. LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun. 1998;4:455–456.
  • Watts JK. Locked nucleic acid: tighter is different. Chem Commun (Camb). 2013 Jun 25;49(50):5618–5620.
  • Lok CN, Viazovkina E, Min KL, et al. Potent gene-specific inhibitory properties of mixed-backbone antisense oligonucleotides comprised of 2ʹ-deoxy-2ʹ-fluoro-D-arabinose and 2ʹ-deoxyribose nucleotides. Biochemistry. 2002 Mar 12;41(10):3457–3467.
  • Anzahaee MY, Deleavey GF, Le PU, et al. Arabinonucleic acids: 2ʹ-stereoisomeric modulators of siRNA activity. Nucleic Acid Ther. 2014 Oct;24(5):336–343.
  • Weitzer S, Martinez J. The human RNA kinase hClp1 is active on 3ʹ transfer RNA exons and short interfering RNAs. Nature. 2007 May 10;447(7141):222–226.
  • Trubetskoy VS, Griffin JB, Nicholas AL, et al. Phosphorylation-specific status of RNAi triggers in pharmacokinetic and biodistribution analyses. Nucleic Acids Res. 2017 Feb 17;45(3):1469–1478.
  • Parmar R, Willoughby JL, Liu J, et al. 5ʹ-(E)-vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA-GalNAc conjugates. Chembiochem. 2016 Jun 2;17(11):985–989.
  • Elkayam E, Parmar R, Brown CR, et al. siRNA carrying an (E)-vinylphosphonate moiety at the 5 end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res. 2017 Apr 7;45(6):3528–3536.
  • Prakash TP, Kinberger GA, Murray HM, et al. Synergistic effect of phosphorothioate, 5ʹ-vinylphosphonate and GalNAc modifications for enhancing activity of synthetic siRNA. Bioorg Med Chem Lett. 2016 Jun 15;26(12):2817–2820.
  • Lemaitre M, Bayard B, Lebleu B. Specific antiviral activity of a poly(L-lysine)-conjugated oligodeoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site. Proc Natl Acad Sci U S A. 1987 Feb;84(3):648–652.
  • Bijsterbosch MK, Manoharan M, Dorland R, et al. Delivery of cholesteryl-conjugated phosphorothioate oligodeoxynucleotides to Kupffer cells by lactosylated low-density lipoprotein. Biochem Pharmacol. 2001 Sep 1;62(5):627–633.
  • Wada S, Yasuhara H, Wada F, et al. Evaluation of the effects of chemically different linkers on hepatic accumulations, cell tropism and gene silencing ability of cholesterol-conjugated antisense oligonucleotides. J Control Release. 2016 Mar;28(226):57–65.
  • Lorenz C, Hadwiger P, John M, et al. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett. 2004 Oct 4;14(19):4975–4977.
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004 Nov 11;432(7014):173–178.
  • Wolfrum C, Shi S, Jayaprakash KN, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 2007 Oct;25(10):1149–1157.
  • Nakayama T, Butler JS, Sehgal A, et al. Harnessing a physiologic mechanism for siRNA delivery with mimetic lipoprotein particles. Mol Ther. 2012 Aug;20(8):1582–1589.
  • Khan T, Weber H, DiMuzio J, et al. Silencing myostatin using cholesterol-conjugated siRNAs induces muscle growth. Mol Ther Nucleic Acids. 2016 Aug 2;5(8):e342.
  • Nishina K, Unno T, Uno Y, et al. Efficient in vivo delivery of siRNA to the liver by conjugation of α-tocopherol. Mol Ther. 2008;16(4):734–740.
  • Raouane M, Desmaele D, Gilbert-Sirieix M, et al. Synthesis, characterization, and in vivo delivery of siRNA-squalene nanoparticles targeting fusion oncogene in papillary thyroid carcinoma. J Med Chem. 2011 Jun 23;54(12):4067–4076.
  • Alterman JF, Hall LM, Coles AH, et al. Hydrophobically modified siRNAs silence huntingtin mRNA in primary neurons and mouse brain. Mol Ther Nucleic Acids. 2015 Dec;1(4):e266.
  • Nikan M, Osborn MF, Coles AH, et al. Docosahexaenoic acid conjugation enhances distribution and safety of siRNA upon local administration in mouse brain. Mol Ther Nucleic Acids. 2016 Aug 9;5(8):e344.
  • Raouane M, Desmaele D, Urbinati G, et al. Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconjug Chem. 2012 Jun 20;23(6):1091–1104.
  • Shen WC, Ryser HJ. Conjugation of poly-L-lysine to albumin and horseradish peroxidase: a novel method of enhancing the cellular uptake of proteins. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1872–1876.
  • Ryser HJ, Shen WC. Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug resistance in cultured cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3867–3870.
  • Said Hassane F, Saleh AF, Abes R, et al. Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci. 2010 Mar;67(5):715–726.
  • Boisguerin P, Deshayes S, Gait MJ, et al. Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev. 2015 Jun;29(87):52–67.
  • Midoux P, Pichon C, Yaouanc JJ, et al. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. 2009 May;157(2):166–178.
  • Midoux P, Mendes C, Legrand A, et al. Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic Acids Res. 1993 Feb 25;21(4):871–878.
  • Zenke M, Steinlein P, Wagner E, et al. Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells. Proc Natl Acad Sci U S A. 1990 May;87(10):3655–3659.
  • Albertshofer K, Siwkowski AM, Wancewicz EV, et al. Structure-activity relationship study on a simple cationic peptide motif for cellular delivery of antisense peptide nucleic acid. J Med Chem. 2005 Oct 20;48(21):6741–6749.
  • Saar K, Lindgren M, Hansen M, et al. Cell-penetrating peptides: a comparative membrane toxicity study. Anal Biochem. 2005 Oct 1;345(1):55–65.
  • Rozema DB, Lewis DL, Wakefield DH, et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):12982–12987.
  • Wong SC, Klein JJ, Hamilton HL, et al. Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Ther. 2012 Dec;22(6):380–390.
  • Wooddell CI, Rozema DB, Hossbach M, et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol Ther. 2013 May;21(5):973–985.
  • Yuen M, Liu K, Chan H, et al. Prolonged RNAi therapy with ARC-520 injection in treatment of CHB results in significant reductions of HBs antigen. EASL - The International Liver Congress; 2017: Arrowhead Pharmaceuticals; 2017.
  • Gane E, Schwabe C, Given B, et al. A phase 1 study to evaluate the safety and tolerability of escalating single doses of the HBV RNAi drug ARC-521 in NHV and CHB patients. EASL - The International Liver Congress; 2017; Amsterdam, The Netherlands: Arrowhead Pharmaceuticals; 2017.
  • Rozema DB, Ekena K, Lewis DL, et al. Endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromolecules. Bioconjug Chem. 2003 Jan-Feb;14(1):51–57.
  • Hou KK, Pan H, Schlesinger PH, et al. A role for peptides in overcoming endosomal entrapment in siRNA delivery – A focus on melittin. Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):931–940.
  • Given B Progress in RNAi-based therapeutics at arrowhead pharmaceuticals. AsiaTIDES; 2017; Kyoto, Japan: Arrowhead Pharmaceuticals; 2017.
  • Arrowhead pharmaceuticals focuses resources on subcutaneous and extra-hepatic RNAi therapeutics. Arrowhead Pharmaceuticals, Inc.; 2016. Available from: http://ir.arrowheadpharma.com/news-releases/news-release-details/arrowhead-pharmaceuticals-focuses-resources-subcutaneous.
  • Young Kim H, Young Yum S, Jang G, et al. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier. Sci Rep. 2015 Jun;26(5):11719.
  • Rensen PC, Sliedregt LA, Ferns M, et al. Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J Biol Chem. 2001 Oct 5;276(40):37577–37584.
  • D’Souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting – strategies and applications. J Control Release. 2015 Apr;10(203):126–139.
  • Hangeland JJ, Levis JT, Lee YC, et al. Cell-type specific and ligand specific enhancement of cellular uptake of oligodeoxynucleoside methylphosphonates covalently linked with a neoglycopeptide, YEE(ah-GalNAc)3. Bioconjug Chem. 1995 Nov-Dec;6(6):695–701.
  • Hangeland JJ, Flesher JE, Deamond SF, et al. Tissue distribution and metabolism of the [32P]-labeled oligodeoxynucleoside methylphosphonate-neoglycopeptide conjugate, [YEE(ah-GalNAc)3]-SMCC-AET-pUmpT7, in the mouse. Antisense Nucleic Acid Drug Dev. 1997 Jun;7(3):141–149.
  • Nair JK, Willoughby JL, Chan A, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014 Dec 10;136(49):16958–16961.
  • Prakash TP, Graham MJ, Yu J, et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 2014 Jul;42(13):8796–8807.
  • Matsuda S, Keiser K, Nair JK, et al. siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem Biol. 2015 May 15;10(5):1181–1187.
  • Rajeev KG, Nair JK, Jayaraman M, et al. Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene silencing in vivo. Chembiochem. 2015 Apr 13;16(6):903–908.
  • Nair JK, Attarwala H, Sehgal A, et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res. 2017 Nov 2;45(19):10969–10977.
  • Yu RZ, Graham MJ, Post N, et al. Disposition and pharmacology of a GalNAc3-conjugated ASO targeting human lipoprotein (a) in mice. Mol Ther Nucleic Acids. 2016 May 3;5:e317.
  • Prakash TP, Yu J, Migawa MT, et al. Comprehensive structure-activity relationship of triantennary N-acetylgalactosamine conjugated antisense oligonucleotides for targeted delivery to hepatocytes. J Med Chem. 2016 Mar 24;59(6):2718–2733.
  • Schmidt K, Prakash TP, Donner AJ, et al. Characterizing the effect of GalNAc and phosphorothioate backbone on binding of antisense oligonucleotides to the asialoglycoprotein receptor. Nucleic Acids Res. 2017 Mar 17;45(5):2294–2306.
  • Tanowitz M, Hettrick L, Revenko A, et al. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Res. 2017 Dec 1;45(21):12388–12400.
  • Pasi KJ, Rangarajan S, Georgiev P, et al. Targeting of antithrombin in hemophilia A or B with RNAi therapy. N Engl J Med. 2017 Aug 31;377(9):819–828.
  • Fitzgerald K, White S, Borodovsky A, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017 Jan 5;376(1):41–51.
  • Rele SM, Cui W, Wang L, et al. Dendrimer-like PEO glycopolymers exhibit anti-inflammatory properties. J Am Chem Soc. 2005 Jul 27;127(29):10132–10133.
  • Kim SJ, Ise H, Kim E, et al. Imaging and therapy of liver fibrosis using bioreducible polyethylenimine/siRNA complexes conjugated with N-acetylglucosamine as a targeting moiety. Biomaterials. 2013 Sep;34(27):6504–6514.
  • Yu SS, Lau CM, Barham WJ, et al. Macrophage-specific RNA interference targeting via “click”, mannosylated polymeric micelles. Mol Pharm. 2013 Mar 4;10(3):975–987.
  • Xiao B, Laroui H, Ayyadurai S, et al. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy. Biomaterials. 2013 Oct;34(30):7471–7482.
  • Ruan GX, Chen YZ, Yao XL, et al. Macrophage mannose receptor-specific gene delivery vehicle for macrophage engineering. Acta Biomaterialia. 2014 May;10(5):1847–1855.
  • Chen J, Son HN, Hill JJ, et al. Nanostructured glycopolymer augmented liposomes to elucidate carbohydrate-mediated targeting. Nanomedicine. 2016 Oct;12(7):2031–2041.
  • Roseman DS, Baenziger JU. Molecular basis of lutropin recognition by the mannose/GalNAc-4-SO4 receptor. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9949–9954.
  • Roseman DS, Baenziger JU. The mannose/N-acetylgalactosamine-4-SO4 receptor displays greater specificity for multivalent than monovalent ligands. J Biol Chem. 2001 May 18;276(20):17052–17057.
  • Roseman DS, Baenziger JU. The Man/GalNAc-4-SO4-receptor: relating specificity to function. Methods Enzymol. 2003;363:121–133.
  • Henke E, Perk J, Vider J, et al. Peptide-conjugated antisense oligonucleotides for targeted inhibition of a transcriptional regulator in vivo. Nat Biotechnol. 2008 Jan;26(1):91–100.
  • Porkka K, Laakkonen P, Hoffman JA, et al. A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7444–7449.
  • Samoylova TI, Smith BF. Elucidation of muscle-binding peptides by phage display screening. Muscle & Nerve. 1999 Apr;22(4):460–466.
  • Yin H, Moulton HM, Betts C, et al. A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet. 2009 Nov 15;18(22):4405–4414.
  • Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007 Jul 5;448(7149):39–43.
  • Alam MR, Dixit V, Kang H, et al. Intracellular delivery of an anionic antisense oligonucleotide via receptor-mediated endocytosis. Nucleic Acids Res. 2008 May;36(8):2764–2776.
  • Alam MR, Ming X, Dixit V, et al. The biological effect of an antisense oligonucleotide depends on its route of endocytosis and trafficking. Oligonucleotides. 2010 Apr;20(2):103–109.
  • Han HD, Mangala LS, Lee JW, et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res. 2010 Aug 1;16(15):3910–3922.
  • Parvani JG, Gujrati MD, Mack MA, et al. Silencing beta3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast cancer. Cancer Res. 2015 Jun 1;75(11):2316–2325.
  • Han TH, Zhao B. Absorption, distribution, metabolism, and excretion considerations for the development of antibody-drug conjugates. Drug Metab Dispos. 2014 Nov;42(11):1914–1920.
  • Hedrich WD, Fandy TE, Ashour HM, et al. Antibody-drug conjugates: pharmacokinetic/pharmacodynamic modeling, preclinical characterization, clinical studies, and lessons learned. Clin Pharmacokinet. 2017 Nov 29.
  • Zhang Y, Boado RJ, Pardridge WM. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. J Gene Med. 2003 Dec;5(12):1039–1045.
  • Pirollo KF, Chang EH. Targeted delivery of small interfering RNA: approaching effective cancer therapies. Cancer Res. 2008 Mar 1;68(5):1247–1250.
  • Ma Y, Kowolik CM, Swiderski PM, et al. Humanized Lewis-Y specific antibody based delivery of STAT3 siRNA. ACS Chem Biol. 2011 Sep 16;6(9):962–970.
  • Cuellar TL, Barnes D, Nelson C, et al. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. Nucleic Acids Res. 2015 Jan;43(2):1189–1203.
  • Baumer S, Baumer N, Appel N, et al. Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer. Clin Cancer Res. 2015 Mar 15;21(6):1383–1394.
  • Sugo T, Terada M, Oikawa T, et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control Release. 2016 Sep;10(237):1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.