998
Views
5
CrossRef citations to date
0
Altmetric
Review

Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs

, , & ORCID Icon
Pages 787-804 | Received 27 Dec 2017, Accepted 18 Jul 2018, Published online: 26 Jul 2018

References

  • Cueni LN, Detmar M. The lymphatic system in health and disease. Lymphat Res Biol. 2008;6:109–122.
  • Bouta EM, Bell RD, Rahimi H, et al. Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis. Nat Rev Rheumatol. 2018;14:94–106.
  • Scallan J, Huxley VH, Korthuis RJ. Chapter 3: the Lymphatic Vasculature. In: Scallan J, Huxley VH, Korthuis RJ, editor. Capillary fluid exchange: regulation, functions, and pathology. San Rafael (CA): Morgan & Claypool Life Sciences; 2010.
  • Choi I, Lee S, Hong YK. The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med. 2012;2:1–23.
  • Zimmermann KA Lymphatic System: facts, Functions & Diseases. Live Science. 2016. Available at http://www.livescience.com/26983-lymphatic-system.html.Accessed on 2017 Feb 18th.
  • O’Driscoll CM. Chapter 1: anatomy and Physiology of the lymphatics. In: William NC, Stella VJ, Editors. Lymphatic transport of drugs. Boca Raton, FL, USA: CRC Press Inc 1992. p. 1–36.
  • Miller MJ, McDole JR, Newberry RD. Microanatomy of the intestinal lymphatic system. Ann N Y Acad Sci. 2010;1207(Suppl 1):E21–8.
  • Reddy LHV, Murthy RSR. Lymphatic transport of orally administered drugs. Indian J Exp Biol. 2002;40(1097–1):109.
  • Ali Khan A, Mudassir J, Mohtar N, et al. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine. 2013;8:2733–2744.
  • Kim H, Kim Y, Lee J. Liposomal formulations for enhanced lymphatic drug delivery. Asian Journal of Pharmaceutical Sciences. 2013;8:96–103.
  • Charman WNA, Stella VJ. Estimating the maximal potential for intestinal lymphatic transport of lipophilic drug molecules. Int J Pharm. 1986;34:175–178.
  • Trevaskis NL, Hu L, Caliph SM, et al. The mesenteric lymph duct cannulated rat model: application to the assessment of intestinal lymphatic drug transport. J Vis Exp. 2015; Epub 2015/ 04/14.
  • [cited 2017 Jun 6]. Available from: http://www.innerbody.com/image_digeov/dige10-new3.html
  • Noah TK, Donahue B, Shroyer NF. Intestinal development and differentiation. Exp Cell Res. 2011;317:2702–2710.
  • Dixon JB. Mechanisms of chylomicron uptake into lacteals. Ann N Y Acad Sci. 2010;1207(Suppl 1):E52–7.
  • Dixon JB. Lymphatic lipid transport: sewer or subway? Trends Endocrinol Metab. 2010;21:480–487.
  • Jung C, Hugot JP, Barreau F. Peyer’s patches: the immune sensors of the intestine. Int J Inflam. 2010;2010:823710.
  • Delie F, Blanco-Príeto MJ. Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules. 2005;10:65–80.
  • Po SP, Zuki ABZ, Zamri-Saad M, et al. Morphological study of the jejunal and ileal Peyer’s patches of three-month old calves. J Anim Vet Adv. 2005;4:579–589.
  • Linden SK, Sutton P, Karlsson NG, et al. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1:183–197.
  • Egberts HJ, Koninkx JF, Van Dijk JE, et al. Biological and pathobiological aspects of the glycocalyx of the small intestinal epithelium. A Review. Vet Q. 1984;6:186–199.
  • Pelaseyed T, Bergstrom JH, Gustafsson JK, Ermund A, Birchenough GM, Schutte A, van der Post S, Svensson F, Rodriguez-Pineiro AM, Nystrom EE, Wising C, Johansson ME, Hansson GC. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260:8–20.
  • Daneman R, Rescigno M. The gut immune barrier and the blood-brain barrier: are they so different? Immunity. 2009;31:722–735.
  • Iwasaki A, Linehan M, Welker R, et al. Immunofluorescence analysis of poliovirus receptor expression in Peyer’s patches of humans, primates, and CD155 transgenic mice: implications for poliovirus infection. J Infect Dis. 2002;186:585–592.
  • Ermund A, Gustafsson JK, Hansson GC, et al. Mucus properties and goblet cell quantification in mouse, rat and human ileal Peyer’s patches. PLoS One. 2013;8:e83688.
  • Gullberg E, Soderholm JD. Peyer’s patches and M cells as potential sites of the inflammatory onset in Crohn’s disease. Ann N Y Acad Sci. 2006;1072:218–232.
  • Neutra MR, Frey A, Kraehenbuhl J-P. Epithelial M cells: gateways for mucosal infection and immunization. Cell. 1996;86:345–348.
  • Anderson M, Omri A. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv. 2004;11:33–39.
  • Shah R, Eldridge D, Palombo E, et al. Lipid Nanoparticles: Production, Characterization and Stability. Switzerland: Springer International Publishing,  2015.
  • Moss DM, Curley P, Kinvig H, et al. The biological challenges and pharmacological opportunities of orally administered nanomedicine delivery. Expert Rev Gastroenterol Hepatol. 2018;12:223–236.
  • Menard S, Cerf-Bensussan N, Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol. 2010;3:247–259.
  • Lane ME, Corrigan OI. Paracellular and transcellular pathways facilitate insulin permeability in rat gut. J Pharm Pharmacol. 2006;58:271–275.
  • Camenisch G, Alsenz J, Van De Waterbeemd H, et al. Estimation of permeability by passive diffusion through caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci. 1998;6:313–319.
  • Muheem A, Shakeel F, Jahangir MA, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2016;24:413–428.
  • Singh R, Singh S, Lillard JW Jr. Past, present, and future technologies for oral delivery of therapeutic proteins. J Pharm Sci. 2008;97:2497–2523.
  • Aungst BJ. Absorption enhancers: applications and advances. AAPS J. 2012;14:10–18.
  • Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal. 2015;23:351–358.
  • Shaji J, Patole V. Protein and Peptide Drug Delivery: oral Approaches. Indian J Pharm Sci. 2008;70:269–277.
  • Anilkumar P, Badarinath AV, Naveen N, et al. A rationalized description on study of intestinal barrier, drug permeability and permeation enhancers. Journal of Global Trends in Pharmaceutical Sciences. 2011;2:431–449.
  • Hochman J, Artursson P. Mechanisms of absorption enhancement and tight junction regulation. J Control Release. 1994;29:253–261.
  • Nielsen MJ, Rasmussen MR, Andersen CB, et al. Vitamin B12 transport from food to the body’s cells–a sophisticated, multistep pathway. Nat Rev Gastroenterol Hepatol. 2012;9:345–354.
  • Hamman JH, Demana PH, Olivier EI. Targeting receptors, transporters and site of absorption to improve oral drug delivery. Drug Target Insights. 2007;2:71–81.
  • Clevers HC, Bevins CL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol. 2013;75:289–311.
  • Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89:836–843.
  • Maekawa M, Terasakaa S, Mochizuki Y, et al. Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis. Proc Natl Acad Sci. 2014;111:E978–E87.
  • Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol. 2009;11:510–520.
  • McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12:517–533.
  • Hirst J, Robinson MS. Clathrin and adaptors. Biochim Biophys Acta. 1998;1404:173–193.
  • Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. J Cell Biol. 2003;161:673–677.
  • Herd H, Daum N, Jones AT, et al. Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano. 2013;7:1961–1973.
  • Kuhn DA, Vanhecke D, Michen B, et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol. 2014;5:1625–1636.
  • Dos Santos T, Varela J, Lynch I, et al. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One. 2011;6:e24438.
  • Hu M, Zhang J, Ding R, et al. Improved oral bioavailability and therapeutic efficacy of dabigatran etexilate via Soluplus-TPGS binary mixed micelles system. Drug Dev Ind Pharm. 2017;43:687–697.
  • Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med. 2017;21:1668–1686.
  • Attili-Qadri S, Karra N, Nemirovski A, et al. Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption. Proc Natl Acad Sci U S A. 2013;110:17498–17503.
  • Wang T, Shen L, Zhang Z, et al. A novel core-shell lipid nanoparticle for improving oral administration of water soluble chemotherapeutic agents: inhibited intestinal hydrolysis and enhanced lymphatic absorption. Drug Deliv. 2017;24:1565–1573.
  • Alrushaid S, Sayre CL, Yanez JA, et al. Pharmacokinetic and toxicodynamic characterization of a novel doxorubicin derivative. Pharmaceutics. 2017;9:1–19.
  • Nishioka Y, Yoshino H. Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev. 2001;47:55–64.
  • Chaudhri VK, Singh P, Hussain Z, et al. Lymphatic system and nanoparticulate carriers for lymphatic delivery. Int J Adv Res Biol Sci. 2016;3:142–152.
  • Ghosh S, Roy T. Nanoparticulate drug-delivery systems: lymphatic uptake and its gastrointestinal applications. J Appl Pharm Sci. 2014;4:123–130.
  • Zhang XY, Lu WY. Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer Biol Med. 2014;11:247–254.
  • Chaudhary S, Garg T, Murthy RS, et al. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J Drug Target. 2014;22:871–882.
  • Ahn H, Park JH. Liposomal delivery systems for intestinal lymphatic drug transport. Biomaterials Research. 2016;20:36.
  • Cai S, Yang Q, Bagby TR, et al. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev. 2011;63:901–908.
  • Saraf S, Ghosh A, Kaur CD, et al. Novel modified nanosystem based lymphatic targeting. Research Journal of Nanoscience and Nanotechnology. 2011;1:60–74.
  • [cited 2017 June 6]. Available from: http://www.vivo.colostate.edu/hbooks/pathphys/digestion/smallgut/absorb_lipids.html
  • Mu H. The digestion of dietary triacylglycerols. Prog Lipid Res. 2004;43:105–133.
  • Phan CT, Tso P. Intestinal lipid absorption and transport. Front Biosci. 2001;6:D299–319.
  • Ramaldes GA, Pereira MA, De Castro PT, et al. Liposome uptake by the Peyer’s patches of mice after oral administration. Rev Bras Cienc Farm. 2002;38:173–182.
  • Bargoni A, Cavalli R, Caputo O, et al. Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharm Res. 1998;15:745–750.
  • Tomizawa H, Aramaki Y, Fujii Y, et al. Uptake of phosphatidylserine liposomes by rat Peyer’s patches following intraluminal administration. Pharm Res. 1993;10:549–552.
  • Harde H, Das M, Jain S. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv. 2011;8:1407–1424.
  • Aramaki Y, Tomizawa H, Hara T, et al. Stability of liposomes in vitro and their uptake by rat Peyer’s patches following oral administration. Pharmaceutical Research. 1993;10:1228–1231.
  • Prajapati JB, Verma SD, Patel AA. Oral bioavailability enhancement of agomelatine by loading into nanostructured lipid carriers: peyer’s patch targeting approach. Int J Nanomedicine. 2018;13:35–38.
  • Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev. 2013;65:822–832.
  • Joshi G, Kumar A, Sawant K. Enhanced bioavailability and intestinal uptake of Gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur J Pharm Sci. 2014;60:80–89.
  • Van Der Lubben IM, Verhoef JC, Van Aelst AC, et al. Chitosan microparticles for oral vaccination: preparation, characterization and preliminary in vivo uptake studies in murine Peyer’s patches. Biomaterials. 2001;22:687–694.
  • Janeway CAJ, Travers P, Mea W. Immunobiology: the immune system in health and disease. ed. 5th edition. New York: Garland Science; 2001. The mucosal immune system. Available from https://www.ncbi.nlm.nih.gov/books/NBK27169/
  • Miller H, Zhang J, KuoLee R, et al. Intestinal M cells: the fallible sentinels? World J Gastroenterol. 2007;13:1477–1486.
  • De Jesus M, Ostroff GR, Levitz SM, et al. A population of Langerin-positive dendritic cells in murine Peyer’s patches involved in sampling beta-glucan microparticles. PLoS One. 2014;9:e91002.
  • Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle technologies for oral drug delivery. Clin Gastroenterol Hepatol. 2014;12:1605–1610.
  • Eldridge JH, Hammond CJ, Meulbroek JA, et al. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally Administered Biodegradable Microspheres Target the Peyer’s Patches. J Control Release. 1990;11:205–214.
  • Des Rieux A, Fievez V, Garinot M, et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1–27.
  • Gullberg E, Leonard M, Karlsson J, et al. Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem Biophys Res Commun. 2000;279:808–813.
  • Jani P, Halbert GW, Langridge J, et al. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol. 1989;41:809–812.
  • Des Rieux A, Ragnarsson EG, Gullberg E, et al. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci. 2005;25:455–465.
  • Shakweh M, Ponchel G, Fattal E. Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv. 2004;1:141–163.
  • Florence AT. Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov Today Technol. 2005;2:75–81.
  • Garinot M, Fievez V, Pourcelle V, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 2007;120:195–204.
  • Jepson MA, Simmons NL, Savidge TC, et al. Selective binding and transcytosis of latex microspheres by rabbit intestinal M cells. Cell Tissue Res. 1993;271:399–405.
  • Jepson MA, Simmons NL, O’hagan DT, et al. Comparison of Poly(DL-Lactide-co-Glycolide) and polystyrene microsphere targeting to intestinal M cells. J Drug Target. 1993;1:245–249.
  • Clark MA, Jepson MA, Hirst BH. Exploiting M cells for drug and vaccine delivery. Adv Drug Deliv Rev. 2001;50:81–106.
  • Eldridge JH, Meulbroek JA, Staas JK, et al. Vaccine-containingbiodegradable microspheresspecifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response. Adv Exp Med Biol. 1989;251:191–202.
  • Ermak TH, Dougherty EP, Bhagat HR, et al. Uptake and transport of copolymer biodegradable microspheres by rabbit Peyer’s patch M cells. Cell Tissue Res. 1995;279:433–436.
  • Torche A-M, Jouan H, Corre PL, et al. Ex vivo and in situ PLGA microspheres uptake by pig ileal Peyer’s patch segment. Int J Pharm. 2000;201:15–27.
  • Margaris KN, Black RA. Modelling the lymphatic system: challenges and opportunities. Journal of the Royal Society, Interface. 2012;9:601–612.
  • Zhao J, Li X, Luo Q, et al. Screening of surface markers on rat intestinal mucosa microfold cells by using laser capture microdissection combined with protein chip technology. Int J Clin Exp Med. 2014;7:932–939.
  • Hase K, Kawano K, Nochi T, et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature. 2009;462:226–230.
  • Peek RM, Fiske C, Wilson KT. Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol Rev. 2010;90:831–858.
  • Datta N, Mukherjee S, Das L, et al. Targeting of immunostimulatory DNA cures experimental visceral leishmaniasis through nitric oxide up-regulation and T cell activation. Eur J Immunol. 2003;33:1508–1518.
  • Medda S, Jaisankar P, Manna RK, et al. Phospholipid microspheres: a novel delivery mode for targeting antileishmanial agent in experimental leishmaniasis. J Drug Target. 2003;11:123–128.
  • Fievez V, Plapied L, Des Rieux A, et al. Targeting nanoparticles to M Cells with non-peptidic ligands for oral vaccination. Eur J Pharm Biopharm 2009;73:16–24.
  • Singodia D, Verma A, Verma RK, et al. Investigations into an alternate approach to target mannose receptors on macrophages using 4-sulfated N-acetyl galactosamine more efficiently in comparison with mannose-decorated liposomes: an application in drug delivery. Nanomedicine. 2012;8:468–477.
  • Youngren SR, Mulik R, Jun B, et al. Freeze-dried targeted mannosylated selenium-loaded nanoliposomes: development and evaluation. AAPS PharmSciTech. 2013;14:1012–1024.
  • De Coen R, Vanparijs N, Risseeuw MD, et al. pH-degradable mannosylated nanogels for dendritic cell targeting. Biomacromolecules. 2016;17:2479–2488.
  • Muller CD, Schuber F. Neo-mannosylated liposomes: synthesis and interaction with mouse Kupffer cells and resident pelitoneal macrophages. Biochim Biophys Acta. 1989;986:97–105.
  • Barratt GM, Nolibe D, Yapo A, et al. Use of mannosylated liposomes for in vivo targeting of a macrophage activator and control of artificial pulmonary metastases. Ann Inst Pasteur Immunol. 1987;138:437–450.
  • Garcon N, Gregoriadis G, Taylor M, et al. Mannose-mediated targeted immunoadjuvant action of liposomes. Immunology. 1988;64:743–745.
  • Kaur A, Jain S, Tiwary AK. Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm. 2008;58:61–74.
  • Stimac A, Segota S, Dutour Sikiric M, et al. Surface modified liposomes by mannosylated conjugates anchored via the adamantyl moiety in the lipid bilayer. Biochim Biophys Acta. 2012;1818:2252–2259.
  • Mcg A-C, Hernandez MJM, Camanas RMV, et al. Formation and instability of o-phthalaldehyde derivatives of amino acids. Anal Biochem. 1989;178:1–7.
  • Zuman P. Reactions of orthophthalaldehyde with nucleophiles. Chem Rev. 2004;104:3217–3238.
  • Wang X, Kochetkova I, Haddad A, et al. Transgene vaccination using Ulex europaeus agglutinin I (UEA-1) for targeted mucosal immunization against HIV-1 envelope. Vaccine. 2005;23:3836–3842.
  • Clark MA, Blair H, Liang L, et al. Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine. 2001;20:208–217.
  • Foster N, Clark MA, Jepson MA, et al. Ulex europaeus 1 lectin targets microspheres to mouse Peyer’s patch M-cells in vivo. Vaccine. 1998;16:536–541.
  • Manocha M, Pal PC, Chitralekha KT, et al. Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex Europaeus-I lectin as M cell target. Vaccine. 2005;23:5599–5617.
  • Chionh YT, Wee JL, Every AL, et al. M-cell targeting of whole killed bacteria induces protective immunity against gastrointestinal pathogens. Infect Immun. 2009;77:2962–2970.
  • Choudhry N, Bajaj-Elliott M, McDonald V. The terminal sialic acid of glycoconjugates on the surface of intestinal epithelial cells activates excystation of Cryptosporidium parvum. Infect Immun. 2008;76:3735–3741.
  • Wood KM, Stone GM, Peppas NA. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery. Biomacromolecules. 2008;9:1293–1298.
  • Romano PR, Mackay A, Vong M, et al. Development of recombinant Aleuria aurantia lectins with altered binding specificities to fucosylated glycans. Biochem Biophys Res Commun. 2011;414:84–89.
  • Roth-Walter F, Scholl I, Untersmayr E, et al. M cell targeting with Aleuria aurantia lectin as a novel approach for oral allergen immunotherapy. J Allergy Clin Immunol. 2004;114:1362–1368.
  • Cornick S, Tawiah A, Chadee K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers. 2015;3:e982426.
  • Jepson MA, Clark MA, Hirst BH. M cell targeting by lectins: a strategy for mucosal vaccination and drug delivery. Adv Drug Deliv Rev. 2004;56:511–525.
  • Irache JM, Durrer C, Duchêne D, et al. In vitro study of lectin-latex conjugates for specific bioadhesion. J Control Release. 1994;31:181–188.
  • Deryugina EI, Ratnikov BI, Postnova TI, et al. Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem. 2002;277:9749–9756.
  • Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3:1–14.
  • Pimton P, Sarkar S, Sheth N, et al. Fibronectin-mediated upregulation of α5β1 integrin and cell adhesion during differentiation of mouse embryonic stem cells. Cell Adh Migr. 2014;5:73–82.
  • Tyrer PC, Ruth Foxwell A, Kyd JM, et al. Receptor mediated targeting of M-cells. Vaccine. 2007;25:3204–3209.
  • Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance. Journal of Cell Science. 2006;119:3901–3903.
  • Frey A, Giannasca KT, Weltzin R, et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med. 1996;184:1045–1059.
  • Salphati L, Childers K, Pan L, et al. Evaluation of a single-pass intestinal-perfusion method in rat for the prediction of absorption in man. J Pharm Pharmacol. 2001;53:1007–1013.
  • Patel JR, Barve KH. Intestinal permeability of Lamivudine using single pass intestinal perfusion. Indian J Pharm Sci. 2012;74:478–481.
  • Lozoya-Agullo I, Gonzalez-Alvarez I, Gonzalez-Alvarez M, et al. In situ perfusion model in rat colon for drug absorption studies: comparison with small intestine and caco-2 cell model. J Pharm Sci. 2015;104:3136–3145.
  • Tsai YJ, Tsai TH. Mesenteric lymphatic absorption and the pharmacokinetics of naringin and naringenin in the rat. J Agric Food Chem. 2012;60:12435–12442.
  • Porter CJH, Charman WN. Model systems for intestinal lymphatic transport studies. In: Borchardt RT, Smith PL, Wilson G. Eds., Models for assessing drug absorption and metabolism. New York: Springer Science & Business Media; 1996. Vol. 8. 85–102.
  • Warshaw AL. A simplified method of cannulating the intestinal lymphatic of the rat. Gut. 1972;13:66–67.
  • Griffin B, O’Driscoll C. 0. In: Ehrhardt C, Kim K-J, Eds. Drug absorption studies. US: Springer; 2008. p. 34–76.
  • Gershkovich P, Qadri B, Yacovan A, et al. Different impacts of intestinal lymphatic transport on the oral bioavailability of structurally similar synthetic lipophilic cannabinoids: dexanabinol and PRS-211,220. Eur J Pharm Sci. 2007;31:298–305.
  • Caliph SM, Charman WN, Porter CJH. Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J Pharm Sci. 2000;89:1073–1084.
  • Manowitz NR, Tso P, Drake DS, et al. Dietary supplementation with Pluronic L-81 modifies hepatic secretion of very low density lipoproteins in the rat. J Lipid Res. 1986;26:196–207.
  • Lu WJ, Yang Q, Yang L, et al. Chylomicron formation and secretion is required for lipid-stimulated release of incretins GLP-1 and GIP. Lipids. 2012;47:571–580.
  • Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50:90–97.
  • Dahan A, Hoffman A. Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs. Eur J Pharm Sci. 2005;24:381–388.
  • Glickman RM, Kirsch K. Lymph chylomicron formation during the inhibition of protein synthesis .Studies of Chylomicron Apoproteins. J Clin Invest. 1973;52:2910–2920.
  • Elsheikh MA, Elnaggar YSR, Otify DY, et al. Bioactive-chylomicrons for oral lymphatic targeting of berberine chloride: novel flow-blockage assay in tissue-based and caco-2 cell line models. Pharm Res. 2018;35:18.
  • Elsheikh MA, Elnaggar YSR, Hamdy DA, et al. Novel cremochylomicrons for improved oral bioavailability of the antineoplastic phytomedicine berberine chloride: optimization and pharmacokinetics. Int J Pharm. 2018;535:316–324.
  • Green PHR, Glickman RM. Intestinal lipoprotein metabolism. J Lipid Res. 1981;22:1153–1173.
  • Rosenbloom SJ, Ferguson FC. Fatty change in organs of the rat treated with colchicine. Toxicol Appl Pharmacol. 1968;13:50–61.
  • Simon-Assmann P, Turck N, Sidhoum-Jenny M, et al. In vitro models of intestinal epithelial cell differentiation. Cell Biol Toxicol. 2007;23:241–256.
  • Ogawa N, Satsu H, Watanabe H, et al. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells. J Nutr. 2000;130:507–513.
  • Grasset E, Pinto M, Dussaulx E, et al. Epithelial properties of human colonic carcinoma cell line caco-2: electrical parameters. Am J Physiol. 1984;247:C260–7.
  • Meunier V, Bourrie M, Berger Y, et al. The human intestinal epithelial cell line caco-2; pharmacological and pharmacokinetic applications. Cell Biol Toxicol. 1995;11:187–194.
  • Kerneis S, Bogdanova A, Kraehenbuhl JP, et al. Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science. 1997;277:949–952.
  • Des Rieux A, Fievez V, Theate I, et al. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur J Pharm Sci.. 2007;30:380–391.
  • Vazquez M, Velez D, Devesa V. In vitro characterization of the intestinal absorption of methylmercury using a caco-2 cell model. Chem Res Toxicol. 2014;27:254–264.
  • Gullberg E, Keita AV, Salim SY, et al. Identification of cell adhesion molecules in the human follicle-associated epithelium that improve nanoparticle uptake into the Peyer’s patches. J Pharmacol Exp Ther. 2006;319:632–639.
  • Balamuralidhara V, Pramodkumar TM, Srujana N, et al. pH sensitive drug delivery systems: a review.. Am J Drug Discov Dev. 2011;1:24–48.
  • Tummala S, Satish Kumar MN, Prakash A. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm J. 2015;23:308–314.
  • Eskandari S, Varamini P, Toth I. Formulation, characterization and permeability study of nano particles of lipo-endomorphin-1 for oral delivery. J Liposome Res. 2013;23:311–317.
  • Hosny KM, Ahmed OAA, Al-Abdali RT. Enteric-coated alendronate sodium nanoliposomes: a novel formula to overcome barriers for the treatment of osteoporosis. Expert Opin Drug Deliv. 2013;10:741–746.
  • Sun H, Liu D, Li Y, et al. Preparation and in vitro/in vivo characterization of enteric-coated nanoparticles loaded with the antihypertensive peptide VLPVPR. Int J Nanomedicine. 2014;9:1709–1716.
  • Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14:781–803.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.