317
Views
15
CrossRef citations to date
0
Altmetric
Review

Characterization of drug delivery vehicles using atomic force microscopy: current status

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1211-1221 | Received 12 Sep 2018, Accepted 07 Nov 2018, Published online: 20 Nov 2018

References

  • Kim EM, Jeong HJ. Current status and future direction of nanomedicine: focus on advanced biological and medical applications. Nucl. Med. Mol. Imaging. 2017;51:106–117.
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016;33:2373–2387.
  • Watanabe A, Takagi M, Murata S, et al. Stability and drug release studies of an antimycotic nanomedicine using HPLC, dynamic light scattering and atomic force microscopy. J. Pharm. Biomed. Anal. 2018;148:149–155.
  • Wang RB, Billone PS, Mullett WM. Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J. Nanomater. 2013;629681. doi: 10.1155/2013/629681
  • Olusanya TOB, Ahmad RRH, Ibegbu DM, et al. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23:907.
  • Pyrgiotakis G, Blattmann CO, Demokritou P. Real-time nanoparticle-cell interactions in physiological media by atomic force microscopy. ACS Sustain. Chem. Eng. 2014;2:1681–1690.
  • Dorobantu LS, Fallone C, Noble AJ, et al. Toxicity of silver nanoparticles against bacteria, yeast, and algae. J. Nanopart. Res. 2015;17:172.
  • Eaton P, West P. Atomic force microscopy. Oxford: Oxford Univ. Press; 2010.
  • Smith JR, Larson C, Campbell SA. Recent applications of SEM and AFM for assessing topography of metal and related coatings - a review. Trans. IMF. 2011;89:18–27.
  • Zhang H, Huang JX, Wang YW, et al. Atomic force microscopy for two-dimensional materials: a tutorial review. Opt. Commun. 2018;406:3–17.
  • Smith JR, Maherally Z, Higgins SC, et al. AFM observation of heightened cell periphery of high-grade glioblastoma cell lines. Bionanoscience. 2016;6:47–53.
  • Maherally Z, Smith JR, Ghoneim MK, et al. Silencing of CD44 in glioma leads to changes in cytoskeletal protein expression and cellular biomechanical deformation properties as measured by AFM nanoindentation. Bionanoscience. 2016;6:54–64.
  • Breakspear S, Smith JR, Luengo G. Effect of the covalently linked fatty acid 18-MEA on the nanotribology of hair’s outermost surface. J. Struct. Biol. 2005;149:235–242.
  • Court S, Kerr C, de Leon CP, et al. Monitoring of zincate pre-treatment of aluminium prior to electroless nickel plating. Trans. IMF. 2017;95:97–105.
  • Smith JR, Breakspear S, Campbell SA. AFM in surface finishing: part I. An introduction. Trans. IMF. 2003;81:B26–9.
  • Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys. Rev. Lett. 1986;56:930–933.
  • Binnig G, Rohrer H, Gerber C, et al. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 1982;40:178–180.
  • Campbell SA, Smith JR, Jungblut H, et al. Protein imaging on a semiconducting substrate: a scanning tunnelling microscopy investigation. J. Electroanal. Chem. 2007;599:313–322.
  • Lewerenz HJ, Skorupska K, Smith JR, et al. Surface chemistry and electronics of semiconductor-nanosystem junctions II: enzyme immobilization, charge transport aspects and scanning probe microscopy imaging. J. Solid State Electrochem. 2009;13:195–203.
  • Skorupska K, Lewerenz HJ, Smith JR, et al. Macromolecule-semiconductor interfaces: from enzyme immobilization to photoelectrocatalytical applications. J. Electroanal. Chem. 2011;662:169.
  • Song YX, Bhushan B. Dynamic analysis of torsional resonance mode of atomic force microscopy and its application to in-plane surface property extraction. Microsystem. Technol. Micro. Nanosys. Inform. Storage Proc. Sys. 2006;12:219–230.
  • Lamprou DA, Venkatpurwar V, Kumar M. Atomic force microscopy images label-free, drug encapsulated nanoparticles in vivo and detects difference in tissue mechanical properties of treated and untreated: a tip for nanotoxicology. PLoS ONE. 2013;8:e64490.
  • Breakspear S, Smith JR, Nevell TG, et al. Friction coefficient mapping using the atomic force microscope. Surf. Interface Anal. 2004;36:1330–1334.
  • Smith JR, Tsibouklis J, Nevell TG, et al. AFM friction and adhesion mapping of the substructures of human hair cuticles. Appl. Surf. Sci. 2013;285:638–644.
  • Breakspear S, Smith JR, Campbell SA. AFM in surface finishing: part III. Lateral force microscopy and friction measurements. Trans. IMF. 2003;81:B68–B70.
  • Chtcheglova LA, Hinterdorfer P. Simultaneous AFM topography and recognition imaging at the plasma membrane of mammalian cells. Seminars Cell Develop. Biol. 2018;73:45–56.
  • Muller DJ, Helenius J, Alsteens D, et al. Force probing surfaces of living cells to molecular resolution. Nature Chem. Biol. 2009;5:383–390.
  • Cappella B, Dietler G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 1999;34:1–104.
  • Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 2005;59:1–152.
  • Smith JR, Breakspear S, Fletcher RJR, et al. AFM in surface finishing: part IV. Force-distance curves. Trans. IMF. 2005;83:63–67.
  • Golek F, Mazur P, Ryszka Z, et al. AFM image artifacts. Appl. Surf. Sci. 2014;304:11–19.
  • Sikora AE, Smith JR, Campbell SA, et al. AFM protein-protein interactions within the EcoR124I molecular motor. Soft Matter. 2012;8:6358–6363.
  • Slattery AD, Shearer CJ, Shapter JG, et al. Solution based methods for the fabrication of carbon nanotube modified atomic force microscopy probes. Nanomaterials. 2017;7:346.
  • Ito T, Grabowska I, Ibrahim S. Chemical-force microscopy for materials characterization. TrAC-Trends Anal. Chem. 2010;29:225–233.
  • Lamprou DA, Smith JR, Nevell TG, et al. Self-assembled alkanethiol structures on gold: a further insight into the origins of structural rearrangement phenomena. Surf. Sci. 2010;604:541–547.
  • Lamprou DA, Smith JR, Nevell TG, et al. Self-assembled structures of alkanethiols on gold-coated cantilever tips and substrates for atomic force microscopy: molecular organisation and conditions for reproducible deposition. Appl. Surf. Sci. 2010;256:1961–1968.
  • Mallinson D, Cheung DL, Simionesie D, et al. Experimental and computational examination of anastellin (FnIII1c)-polymer interactions. J. Biomed. Mater. Res. Part A. 2017;105:737–745.
  • Yivlialin R, Penconi M, Bussetti G, et al. Morphological changes of porphine films on graphite by perchloric and phosphoric electrolytes: an electrochemical-AFM study. Appl. Surf. Sci. 2018;442:501–506.
  • Konomi M, Sacha GM. Feedforward neural network methodology to characterize thin films by Electrostatic Force Microscopy. Ultramicroscopy. 2017;182:243–248.
  • Melitz W, Shen J, Kummel AC, et al. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011;66:1–27.
  • Heo J, Won S. Scanning probe study on the photovoltaic characteristics of a Si solar cell by using Kelvin force microscopy and photoconductive atomic force microscopy. Thin Solid Films. 2013;546:353–357.
  • Ligor O, Gautier B, Descamps-Mandine A, et al. Interpretation of scanning capacitance microscopy for thin oxides characterization. Thin Solid Films. 2009;517:6721–6725.
  • Lee I, Chung E, Kweon H, et al. Scanning surface potential microscopy of spore adhesion on surfaces. Colloids Surf. B Biointerfaces. 2012;92:271–276.
  • Doering S, Wachowiak A, Winkler U. Scanning Spreading Resistance Microscopy analysis of locally blocked implant sites. Microelectron. Eng. 2014;122:77–81.
  • Fischer H. Quantitative determination of heat conductivities by scanning thermal microscopy. Thermochim. Acta. 2005;425:69–74.
  • Placzek M, Kosela M. Microscopic methods in analysis of submicron phospholipid dispersions. Acta Pharm. 2016;66:1–22.
  • Zhu J, Liao L, Bian XJ, et al. pH-Controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres. Small. 2012;8:2715–2720.
  • Smith JR, Lamprou DA. Polymer coatings for biomedical applications: a review. Trans. IMF. 2014;92:9–19.
  • Eaton P, Quaresma P, Soares C, et al. A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy. 2017;182:179–190.
  • Bazylińska U. Rationally designed double emulsion process for co-encapsulation of hybrid cargo in stealth nanocarriers. Colloids Surf. A Physicochem. Eng. Asp. 2017;532:476–482.
  • Ramezanpour M, Leung SSW, Delgado-Magnero KH, et al. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim. Biophys. Acta Biomembr. 2016;1858:1688–1709.
  • Zhang X, Cheng HB, Dong W, et al. Design and intestinal mucus penetration mechanism of core-shell nanocomplex. J. Control. Release. 2018;272:29–38.
  • Kobes JE, Daryaei I, Howison CM, et al. Improved treatment of pancreatic cancer with drug delivery nanoparticles loaded with a novel AKT/PDK1 inhibitor. Pancreas. 2016;45:1158–1166.
  • Toman P, Lien CF, Ahmad Z, et al. Nanoparticles of alkylglyceryl-dextran-graft-poly(lactic acid) for drug delivery to the brain: preparation and in vitro investigation. Acta Biomater. 2015;23:250–262.
  • Ping Y, Dw D, Ramos R, et al. Supramolecular beta-sheets stabilized protein nanocarriers for drug delivery and gene transfection. ACS Nano. 2017;11:4528–4541.
  • Masarudin MJ, Cutts SM, Evison BJ, et al. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of C-14-doxorubicin. Nanotechnol. Sci. Appl. 2015;8:67–80.
  • Al-Kinani AA, Naughton DP, Calabrese G, et al. Analysis of 2-oxothiazolidine-4-carboxylic acid by hydrophilic interaction liquid chromatography: application for ocular delivery using chitosan nanoparticles. Anal. Bioanal. Chem. 2015;407:2645–2650.
  • Akanda MH, Rai R, Slipper IJ, et al. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Int. J. Pharm. 2015;493:161–171.
  • Cai XJ, Woods A, Mesquida P, et al. Assessing the potential for drug-nanoparticle surface interactions to improve drug penetration into the skin. Mol. Pharm. 2016;13:1375–1384.
  • Engelhardt KH, Pinnapireddy SR, Baghdan E, et al. Transfection studies with colloidal systems containing highly purified bipolar tetraether lipids from sulfolobus acidocaldarius. Archaea. 2017;8047149. doi: 10.1155/2017/8047149.
  • Briuglia ML, Rotella C, McFarlane A, et al. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 2015;5:231–242.
  • Meng L, Deng ZT, Niu LL, et al. A disposable microfluidic device for controlled drug release from thermal-sensitive liposomes by high intensity focused ultrasound. Theranostics. 2015;5:1203–1213.
  • Roma-Rodrigues C, Fernandes AR, Baptista PV. Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. Biomed. Res. Int. 2014;179486. doi: 10.1155/2014/179486
  • Parisse P, Rago I, Severino LU, et al. Atomic force microscopy analysis of extracellular vesicles. Eur. Biophys. J. Biophys. Lett. 2017;46:813–820.
  • Bourkoula E, Mangoni D, Ius T, et al. Glioma-associated stem cells: a novel class of tumor-supporting cells able to predict prognosis of human low-grade gliomas. Stem Cells. 2014;32:1239–1253.
  • Skog J, Wurdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biol. 2008;10:1470–1476.
  • Svensson KJ, Kucharzewska P, Christianson HC, et al. Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc. Natl. Acad. Sci. USA. 2011;108:13147–13152.
  • Akers JC, Ramakrishnan V, Kim R, et al. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS ONE. 2013;8:e78115.
  • Fais S, O’Driscoll L, Borras FE, et al. Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano. 2016;10:3886–3899.
  • Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J. Extracellular Vesicles. 2016;5:32945.
  • Bousmail D, Amrein L, Fakhoury JJ, et al. Precision spherical nucleic acids for delivery of anticancer drugs. Chem. Sci. 2017;8:6218–6229.
  • Arora D, Kumar A, Gupta P, et al. Preparation, characterization and cytotoxic evaluation of bovine serum albumin nanoparticles encapsulating 5-methylmellein: a secondary metabolite isolated from Xylaria psidii. Bioorg. Med. Chem. Lett. 2017;27:5126–5130.
  • Fojtu M, Chia XY, Sofer Z, et al. Black phosphorus nanoparticles potentiate the anticancer effect of oxaliplatin in ovarian cancer cell line. Adv. Funct. Mater. 2017;27:1701955.
  • Paul PK, Treetong A, Suedee R. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system. Acta Pharm. 2017;67:149–168.
  • Fatouros DG, Lamprou DA, Urquhart AJ, et al. Lipid-like self-assembling peptide nanovesicles for drug delivery. ACS Appl. Mater. Interfaces. 2014;6:8184–8189.
  • Grant CA, Twigg PC, Baker R, et al. Tattoo ink nanoparticles in skin tissue and fibroblasts. Beilstein J. Nanotechnol. 2015;6:1183–1191.
  • Smith JR, Breakspear S, Campbell SA. AFM in surface finishing: part II. Surface Roughness. Trans. IMF. 2003;81:B55–B58.
  • Kim SY, Naskar D, Kundu SC, et al. Formulation of biologically-inspired silk-based drug carriers for pulmonary delivery targeted for lung cancer. Sci. Rep. 2015;5:11878.
  • Perli MD, Karagkiozaki V, Pappa F, et al. Synthesis and characterization of Ag nanoparticles for orthopaedic applications. Mater. Today Proc. 2017;4:6889–6900.
  • Shimpi NG, Jha M. Green synthesis of silver nanoparticles using tabernaemontana divaricata and in-vitro cytotoxicity investigation against human lung adenocarcinoma. Int. J. Pharm. Sci. Res. 2017;8:5100–5110.
  • Kumar S, Singh SK. Fabrication and characterization of fibroin solution and nanoparticle from silk fibers of Bombyx mori. Particu. Sci. Technol. 2017;35:304–313.
  • Marchetti M, Wuite GJL, Roos WH. Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr. Opin. Virol. 2016;18:82–88.
  • Reggente M, Passeri D, Angeloni L, et al. Detection of stiff nanoparticles within cellular structures by contact resonance atomic force microscopy subsurface nanomechanical imaging. Nanoscale. 2017;9:5671–5676.
  • Karagkiozaki V, Pappa F, Arvaniti D, et al. The melding of nanomedicine in thrombosis imaging and treatment: a review. Future Sci. 2016;2:FSO113.
  • Karagkiozaki V, Logothetidis S, Kassavetis S, et al. Nanomedicine for the reduction of the thrombogenicity of stent coatings. Int. J. Nanomed. 2010;5:239–248.
  • Karagkiozaki V, Logothetidis S, Kassavetis S, et al. Nanoscale characterization of biological and mechanical profile of carbon stent nanocoatings. Eur. J. Nanomed. 2009;2:14–21.
  • Karagkiozaki V, Logothetidis S, Lousinian S, et al. Impact of surface electric properties of carbon-based thin films on platelets activation for nano-medical and nano-sensing applications. J. Int. Nanomed. 2008;3:461–469.
  • Gebril AM, Lamprou DA, Alsaadi MM, et al. Assessment of the antigen-specific antibody response induced by mucosal administration of a GnRH conjugate entrapped in lipid nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2014;10:971–979.
  • Bozzini B, D’Urzo L, Huo SJ, et al. ATR FTIR study of levellers for Cu electrodeposition from acidic sulphate solution. Trans. IMF. 2008;86:41–50.
  • Lee KY, Jeong L, Kang YO, et al. Electrospinning of polysaccharides for regenerative medicine. Adv. Drug Deliv. Rev. 2009;61:1020–1032.
  • Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.
  • Joseph J, Patel RM, Wenham A, et al. Biomedical applications of polyurethane materials and coatings. Trans. IMF. 2018;96:121–129.
  • Kaur N, Kumar V, Dhakate SR. Synthesis and characterization of multiwalled CNT-PAN based composite carbon nanofibers via electrospinning. SpringerPlus. 2016;5:483.
  • Janjic M, Pappa F, Karagkiozaki V, et al. Surface modification of endovascular stents with rosuvastatin and heparin-loaded biodegradable nanofibers by electrospinning. Int. J. Nanomed. 2017;12:6343–6355.
  • Vulpe S, Negroiu G, Nastase C, et al. PAN/PDLLA fibers with magnetic mineral nanoparticles insertion for controlled release of drugs. Rom. Rep. Phys. 2014;66:693–703.
  • Viana JFC, Carrijo J, Freitas CG, et al. Antifungal nanofibers made by controlled release of sea animal derived peptide. Nanoscale. 2015;7:6238–6246.
  • Tipduangta P, Belton P, Fabian L, et al. Electrospun polymer blend nanofibers for tunable drug delivery: the role of transformative phase separation on controlling the release rate. Mol. Pharm. 2016;13:25–39.
  • Barrientos IJH, Paladino E, Brozio S, et al. Fabrication and characterisation of drug-loaded electrospun polymeric nanofibers for controlled release in hernia repair. Int. J. Pharm. 2017;517:329–337.
  • Barrientos IJH, Paladino E, Szabo P, et al. Electrospun collagen-based nanofibres: a sustainable material for improved antibiotic utilisation in tissue engineering applications. Int. J. Pharm. 2017;531:67–79.
  • Jiang J, Chen GJ, Shuler FD, et al. Local sustained delivery of 25-hydroxyvitamin D-3 for production of antimicrobial peptides. Pharm. Res. 2015;32:2851–2862.
  • Brako F, Raimi-Abraham B, Mahalingam S, et al. Making nanofibres of mucoadhesive polymer blends for vaginal therapies. Eur. Polym. J. 2015;70:186–196.
  • Wali A, Zhang YC, Sengupta P, et al. Electrospinning of non-ionic cellulose ethers/polyvinyl alcohol nanofibers: characterization and applications. Carbohydr. Polym. 2018;181:175–182.
  • Dzamukova MR, Naumenko EA, Lvov YM, et al. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation. Sci. Rep. 2015;5:10560.
  • Mendes AC, Nikogeorgos N, Lee S, et al. Nanomechanics of electrospun phospholipid fiber. Appl. Phys. Lett. 2015;106:223108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.