1,173
Views
64
CrossRef citations to date
0
Altmetric
Review

Use of computational fluid dynamics deposition modeling in respiratory drug delivery

, , , , , & show all
Pages 7-26 | Received 30 Oct 2018, Accepted 20 Nov 2018, Published online: 10 Dec 2018

References

  • Finlay WH. The mechanics of inhaled pharmaceutical aerosols. San Diego: Academic Press; 2001.
  • Longest PW, Hindle M, Das Choudhuri S, et al. Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry. J Aerosol Sci. 2008;39(7):572–591.
  • Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of beta(2)-agonist particle size. Am J Respir Crit Care Med. 2005 Dec 15;172(12):1497–1504. PubMed PMID: WOS:000234019000007.
  • Usmani OS, Singh D, Spinola M, et al. The prevalence of small airways disease in adult asthma: a systematic literature review. Respir Med. 2016;116:19–27.
  • Berry M, Hargadon B, Morgan A, et al. Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma. Eur Respir J. 2005;25(6):986–991.
  • Weers J. Inhaled antimicrobial therapy - barriers to effective treatment. Adv Drug Deliv Rev. 2015;85:24–43.
  • Geller DE. Aerosol antibiotics in cystic fibrosis. Respir Care. 2009;54(5):658–670.
  • Willson DF. Aerosolized surfactants, anti-inflammatory drugs, and analgesics. Respir Care. 2015;60(6):774–793.
  • Patton JS, Brain JD, Davies LA, et al. The particle has landed-characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulm Drug Deliv. 2010 Dec;23:S71–S87. PubMed PMID: ISI:000285003700006.
  • Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev. 2006;58:1030–1060.
  • Delvadia R, Hindle M, Longest PW, et al. In vitro tests for aerosol deposition II: IVIVCs for different dry powder inhalers in normal adults. J Aerosol Med Pulm Drug Deliv. 2013;26(3):138–144.
  • Wei X, Hindle M, Kaviratna A, et al. In vitro tests for aerosol deposition. VI: realistic testing with different mouth–throat models and in vitro—in vivo correlations for a dry powder inhaler, metered dose inhaler, and soft mist inhaler. J Aerosol Med Pulm Drug Deliv. 2018.
  • Longest PW, Tian G, Walenga RL, et al. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm Res. 2012;29:1670–1688.
  • Longest PW, Hindle M. Small airway absorption and microdosimetry of inhaled corticosteriod particles after deposition. Pharm Res. 2017;34(10):2049–2065.
  • Arora D, Shah KA, Halquist MS, et al. In vitro aqueous fluid-capacity-limited dissolution testing of respirable aerosol drug particles generated from inhaler products. Pharm Res. 2010 May;27(5):786–795. PubMed PMID: WOS:000276512500007
  • Longest PW, Holbrook LT. In silico models of aerosol delivery to the respiratory tract - development and applications. Adv Drug Deliv Rev. 2012;64:296–311.
  • Stahlhofen W, Rudolf G, James AC. Intercomparison of experimental regional aerosol deposition data. J Aerosol Med. 1989;2(3):285–308.
  • Finlay WH, Martin AR. Recent advances in predictive understanding of respiratory tract deposition. J Aerosol Med Pulm Drug Deliv. 2008;21(2):189–205.
  • Choi J, Kim CS. Mathematical analysis of particle deposition in human lungs: an improved single path transport model. Inhal Toxicol. 2007;19:925–939.
  • Asgharian B, Hofmann W, Bergmann R. Particle deposition in a multiple-path model of the human lung. Aerosol Sc Technol. 2001;34:332–339.
  • Martonen TB. Analytical model of hygroscopic particle behavior in human airways. Bull Math Biol. 1982;44(3):425–442.
  • Katz I, Pichelin M, Caillibotte G, et al. Controlled, parametric, individualized, 2D, and 3D imaging measurements of aerosol deposition in the respiratory tract of healthy human subjects: preliminary comparisons with simulations. Aerosol Sc Technol. 2013 Jul;47(7):714–723. PubMed PMID: WOS:000321321500002. .
  • Conway J, Fleming J, Majoral C, et al. Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of healthy human subjects for model validation. J Aerosol Sci. 2012 Oct;52:1–17. PubMed PMID: WOS:000307796800001.
  • Fleming JS, Epps BP, Conway JH, et al. Comparison of SPECT aerosol deposition data with a human respiratory tract model. J Aerosol Med Deposition Clearance Effects Lung. 2006 Fal;19(3):268–278. PubMed PMID: ISI:000241596300005.
  • Koblinger L, Hofmann W. Monte Carlo modeling of aerosol deposition in human lungs. Part I: simulation of particle transport in a stochastic lung structure. J Aerosol Sci. 1990;21(5):661–674.
  • Kim CS. Deposition of aerosol particles in human lungs: in vivo measurement and modeling. Biomarkers. 2009;14(S1):54–58.
  • Longest PW, Hindle M. Evaluation of the respimat soft mist inhaler using a concurrent CFD and in vitro approach. J Aerosol Med Pulm Drug Deliv. 2009;22(2):99–112.
  • Longest PW, Tian G, Delvadia R, et al. Development of a stochastic individual path (SIP) model for predicting the deposition of pharmaceutical aerosols: effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes. Aerosol Sc Technol. 2012;46(12):1271–1285.
  • Oldham MJ, Phalen RF, Heistracher T. Computational fluid dynamic predictions and experimental results for particle deposition in an airway model. Aerosol Sc Technol. 2000 Jan;32(1):61–71. PubMed PMID: ISI:000084780800007.
  • Sznitman J, Sutter R, Altorfer D, et al. Visualization of respiratory flows from 3D reconstructed alveolar airsapces using X-ray tomographic microscopy. J Vis. 2010;13:337–345.
  • DeHaan WH, Finlay WH. Predicting extrathoracic deposition from dry powder inhalers. J Aerosol Sci. 2004;35:309–331.
  • Xi J, Longest PW. Numerical predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. Inte J Heat Mass Transfer. 2008;51:5562–5577.
  • Golshahi L, Noga ML, Finlay WH. Deposition of inhaled micrometer-sized particles in oropharyngeal airway replicas of children at constant flow rates. J Aerosol Sci. 2012;49:21–31.
  • Tannehill JC, Anderson DA, Pletcher RH. Computational fluid mechanics and heat transfer. 2 ed. Washington (DC): Taylor and Francis; 1997.
  • Patankar S. Numerical heat transfer and fluid flow. Boca Raton, FL: CRC press; 1980.
  • Balashazy I, Hofmann W. Particle deposition in airway bifurcations-II. Expiratory flow. J Aerosol Sci. 1993;24:773–786.
  • Finlay W, Stapleton K, Yokota J. On the use of computational fluid dynamics for simulating flow and particle deposition in the human respiratory tract. J Aerosol Med. 1996;9(3):329–341.
  • Kimbell JS, Gross EA, Joyner DR, et al. Application of computational fluid dynamics regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat. Toxicol Appl Pharmacol. 1993;121:253–263.
  • Comer JK, Kleinstreuer C, Hyun S, et al. Aerosol transport and deposition in sequentially bifurcating airways. J Biomech Eng. 2000 Apr;122(2):152–158. PubMed PMID: ISI:000167110900006
  • Martonen TB, Guan XF. Effects of tumors on inhaled pharmacologic drugs II. Particle motion. Cell Biochem Biophys. 2001;35(3):245–253. PubMed PMID: ISI:000172754200003.
  • Xi J, Longest PW, Martonen TB. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol. 2008;104(6):1761–1777.
  • Longest PW, Vinchurkar S, Martonen TB. Transport and deposition of respiratory aerosols in models of childhood asthma. J Aerosol Sci. 2006;37:1234–1257.
  • Sznitman J, Heimshch T, Wildhaber JH, et al. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree. J Biomech Eng. 2009;131:031010.
  • Lambert AR, O’Shaughnessy PT, Tawhai MH, et al. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry. Aerosol Sc Technol. 2011;45:11–25.
  • Inthavong K, Choi L-T, Tu J, et al. Micron particle deposition in a tracheobronchial airway model under different breathing conditions. Med Eng Phys. 2010;32:1198–1212.
  • Lin C-L, Tawhai MH, McLennan G, et al. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol. 2007;157:295–309.
  • Choi J, Tawhai M, Hoffman EA, et al. On intra- and intersubject variabilities of airflow in the human lungs. Phys Fluids. 2009;21:101901.
  • Li Z, Kleinstreuer C, Zhang Z. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. Aerosol Sci. 2007;38:625–644.
  • Cui Y, Sommerfeld M. Forces on micron-sized particles randomly distributed on the surface of larger particles and possibility of detachment. Int J Multiphase Flow. 2015;72:39–52.
  • Cui Y, Sommerfeld M. Application of lattice-Boltzmann method for analysing detachment of micron-sized particles from carrier particles in turbulent flows. Flow Turbul Combust. 2018;100(1):271–297.
  • Sommerfeld M, Schmalfuß S. Numerical analysis of carrier particle motion in a dry powder inhaler. J Fluids Eng. 2016;138(4):041308.
  • Wong W, Fletcher DF, Traini D, et al. The use of computational approaches in inhaler development. Adv Drug Deliv Rev. 2012 Mar 30;64(4):312–322. PubMed PMID: WOS:000302986000003.
  • Ruzycki CA, Javaheri E, Finlay WH. The use of computational fluid dynamics in inhaler design. Expert Opin Drug Deliv. 2013;10(3):307–323.
  • Matida EA, Finlay WH, Breuer M, et al. Improving prediction of aerosol deposition in an idealized mouth using large-eddy simulation. J Aerosol Med. 2006;19(3):290–300.
  • Tian G, Longest PW, Su G, et al. Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: effects of transient inhalation and sampling the airways. J Aerosol Sci. 2011;42:781–799.
  • Khajeh-Hosseini-Dalasm N, Longest PW. Deposition of particles in the alveolar airways: inhalation and breath-hold with pharmaceutical aerosols. J Aerosol Sci. 2015;79:15–30.
  • Bos AC, Mouton JW, van Westreenen M, et al. Patient-specific modelling of regional tobramycin concentration levels in airways of patients with cystic fibrosis: can we dose once daily? [Article]. J Antimicrob Chemother. 2017 Dec;72(12):3435–3442. PubMed PMID: WOS:000417256000029; English.
  • Lin CL, Tawhai MH, Hoffman EA. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs. Wiley Interdiscip Rev Syst Biol Med. 2013 Sep-Oct;5(5):643–655. PubMed PMID: 23843310; PubMed Central PMCID: PMCPMC3763693. .
  • Zhang Z, Kleinstreuer C, Kim CS. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model. Ann Biomed Eng. 2008;36(12):2095–2110.
  • Gemci T, Ponyavin V, Chen Y, et al. Computational model of airflow in upper 17 generations of human respiratory tract. J Biomech. 2008;41(9):2047–2054.
  • Kleinstreuer C, Zhang Z, Li Z. Modeling airflow and particle transport/deposition in pulmonary airways. Respir Physiol Neurobiol. 2008;163:128–138.
  • Zhang Z, Kleinstreuer C, Donohue JF, et al. Comparison of micro- and nano-size particle depositions in a human upper airway model. J Aerosol Sci. 2005 Feb;36(2):211–233. PubMed PMID: ISI:000226885800004
  • Kleinstreuer C, Shi H, Zhang Z. Computational analyses of a pressurized metered dose inhaler and an new drug-aerosol targeting methodology. J Aerosol Med. 2007;20(3):294–309.
  • Ilie M, Matida EA, Finlay WH. Asymmetrical aerosol deposition in an idealized mouth with a DPI mouthpiece inlet. Aerosol Sc Technol. 2008;42:10–17.
  • Finlay WH, Martin AR. Modeling of aerosol deposition within interface devices. J Aerosol Med. 2007;20(S1):S19–S28.
  • Katz IM, Davis BM, Martonen TB. A numerical study of particle motion within the human larynx and trachea. J Aerosol Sci. 1999 Feb;30(2):173–183. PubMed PMID: ISI:000076836100005.
  • Miyawaki S, Tawhai MH, Hoffman EA, et al. Effect of carrier gas properties on aerosol distribution in a CT-based human airway numerical model. Ann Biomed Eng. 2012;40(7):1495–1507.
  • Miyawaki S, Hoffman EA, Lin C-L. Numerical simulations of aerosol delivery to the human lung with an idealized laryngeal model, image-based airway model, and automatic meshing algorithm. Comput Fluids. 2017;148:1–9.
  • Sznitman J, Heimsch F, Heimsch T, et al. Three-dimensional convective alveolar flow induced by rythmic breathing motion of the pulmonary acinus. ASME J Biomech Eng. 2007;129:658–665.
  • Hofemeier P, Sznitman J. Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion, and their interplay. J Appl Physiol. 2015;118(11):1375–1385.
  • Oakes JM, Hofemeier P, Vignon-Clementel IE, et al. Aerosols in healthy and emphysematous in silico pulmonary acinar rat models. J Biomech. 2016;49(11):2213–2220.
  • Ostrovski Y, Hofemeier P, Sznitman J. Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles. Int J Nanomedicine. 2016;11:3385.
  • Hofemeier P, Koshiyama K, Wada S, et al. One (sub-) acinus for all: fate of inhaled aerosols in heterogeneous pulmonary acinar structures. Eur J Pharm Sci. 2018;113:53–63.
  • Koshiyama K, Wada S. Mathematical model of a heterogeneous pulmonary acinus structure. Comput Biol Med. 2015;62:25–32.
  • Talaat K, Xi J. Computational modeling of aerosol transport, dispersion, and deposition in rhythmically expanding and contracting terminal alveoli. J Aerosol Sci. 2017;112:19–33.
  • Xi J, Talaat K, Si XA. Deposition of bolus and continuously inhaled aerosols in rhythmically moving terminal alveoli. J Comput Multiphase Flows. 2018;112:19–33. 1757482X18791891.
  • Sera T, Higashi R, Naito H, et al. Distribution of nanoparticle depositions after a single breathing in a murine pulmonary acinus model. Int J Heat Mass Transfer. 2017;108:730–739.
  • Roshchenko A, Minev PD, Finlay WH. A time splitting fictitious domain algorithm for fluid–structure interaction problems (A fictitious domain algorithm for FSI). J Fluids Struct. 2015;58:109–126.
  • Delvadia RR, Wei X, Longest PW, et al. In vitro tests for aerosol deposition. IV: simulating variations in human breath profiles for realistic DPI testing. J Aerosol Med Pulm Drug Deliv. 2016;29(2):196–206.
  • Delvadia RR, Longest PW, Hindle M, et al. In vitro tests for aerosol deposition. III: effect of inhaler insertion angle on aerosol deposition. J Aerosol Med Pulm Drug Deliv. 2013;26(3):145–156.
  • Matida EA, Finlay WH, Grgic LB. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. J Aerosol Sci. 2004;35:1–19.
  • Longest PW, Hindle M, Das Choudhuri S, et al. Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data. Aerosol Sci Technol. 2007;41(10):952–973.
  • Hindle M, Longest PW. Quantitative analysis and design of a spray aerosol inhaler. Part 2: improvements in mouthpiece performance. J Aerosol Med Pulm Drug Deliv. 2013;26(5):237–247.
  • Longest PW, Hindle M. Quantitative analysis and design of a spray aerosol inhaler. Part 1: effects of dilution air inlets and flow paths. J Aerosol Med Pulm Drug Deliv. 2009;22(3):271–283.
  • Longest PW, Hindle M, Das Choudhuri S. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry. J Aerosol Med Pulm Drug Deliv. 2009;22(3):67–84.
  • Longest PW, Hindle M, Das Choudhuri S, et al. Developing a better understanding of spray system design using a combination of CFD modeling and experiment. In: Dalby RN, Byron PR, Peart J, et al., editors. Proceedings of respiratory drug delivery 2008. Illinois: Davis Healthcare International Publishing; 2008. 151–163.
  • Longest PW, Oldham MJ. Numerical and experimental deposition of fine respiratory aerosols: development of a two-phase drift flux model with near-wall velocity corrections. Aerosol Sci. 2008;39:48–70.
  • Longest PW, Vinchurkar S. Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. J Biomech. 2007;40(2):305–316.
  • Longest PW, Oldham MJ. Mutual enhancements of CFD modeling and experimental data: a case study of one micrometer particle deposition in a branching airway model. Inhal Toxicol. 2006;18(10):761–772.
  • Holbrook LT, Longest PW. Validating CFD predictions of highly localized aerosol deposition in airway models: in vitro data and effects of surface properties. J Aerosol Sci. 2013;59:6–21.
  • Matida EA, DeHaan WH, Finlay WH, et al. Simulation of particle deposition in an idealized mouth with different small diameter inlets. Aerosol Sc Technol. 2003;37:924–932.
  • Bass K, Longest PW. Recommendations for simulating microparticle deposition at conditions similar to the upper airways with two-equation turbulence models. J Aerosol Sci. 2018. DOI:10.1016/j.jaerosci.2018.02.007
  • Zhang Y, Finlay WH, Matida EA. Particle deposition measurements and numerical simulations in a highly idealized mouth-throat. J Aerosol Sci. 2004;35:789–803.
  • Tian G, Longest PW, Su G, et al. Characterization of respiratory drug delivery with enhanced condensational growth (ECG) using an individual path model of the entire tracheobronchial airways. Ann Biomed Eng. 2011 March; 39(3):18. .
  • Walenga RL, Longest PW. Current inhalers deliver very small doses to the lower tracheobronchial airways: assessment of healthy and constricted lungs. J Pharm Sci. 2016;105:147–159.
  • Walenga RL, Tian G, Longest PW. Development of characteristic upper tracheobronchial airway models for testing pharmaceutical aerosol delivery. ASME J Biomech Eng. 2013;135(9):091010.
  • Longest PW, Tian G, Khajeh-Hosseini-Dalasm N, et al. Validating whole-airway CFD predictions of DPI aerosol deposition at multiple flow rates. J Aerosol Med Pulm Drug Deliv. 2016;29(6):461–481.
  • Tian G, Hindle M, Lee S, et al. Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data. Pharm Res. 2015;32:3170–3187.
  • Newman SP, Brown J, Steed KP, et al. Lung deposition of fenoterol and flunisolide delivered using a novel device for inhaled medicines. Chest. 1998;113:957–963.
  • Heistracher T, Hofmann W. Physiologically realistic models of bronchial airway bifurcations. J Aerosol Sci. 1995;26(3):497–509.
  • Yeh HC, Schum GM. Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol. 1980;42:461–480.
  • Phalen RF, Oldham MJ. Tracheobronchial airway structure as revealed by casting techniques. Am Rev Respir Dis. 1983;128:S1–S4.
  • Phalen RF, Yeh HC, Schum GM, et al. Application of an idealized model to morphometry of the mammalian tracheobronchial tree. Anat Rec. 1978;190:167–176.
  • Sauret V, Halson PM, Brown IW, et al. Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (CT) images. J Anat. 2002;2002:123–134.
  • Koblinger L, Hofmann W. Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys Med Biol. 1985;30:541–556.
  • ICRP. Human respiratory tract model for radiological protection. Vol. 66, New York (NY): Elsevier Science Ltd.; 1994. (Annals of the ICRP).
  • Longest PW, Vinchurkar S. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med Eng Phys. 2007;29(3):350–366.
  • Vinchurkar S, Longest PW. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Comput Fluids. 2008;37(3):317–331.
  • Tawhai MH, Hunter P, Tschirren J, et al. CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J Appl Physiol. 2004 Dec;97(6):2310–2321. PubMed PMID: WOS:000224899500036; English. .
  • Kleinstreuer C, Zhang Z. An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways [Article]. J Biomech Eng Trans ASME. 2009 Feb;131(2):10. PubMed PMID: WOS:000261891400007; English.
  • Kolanjiyil AV, Kleinstreuer C. Nanoparticle mass transfer from lung airways to systemic regions-Part II: multi-compartmental modeling [Article]. J Biomech Eng Trans ASME. 2013 Dec;135(12):12. PubMed PMID: WOS:000327096500004; English.
  • Kolanjiyil AV, Kleinstreuer C. Nanoparticle mass transfer from lung airways to systemic regions-Part I: whole-lung aerosol dynamics [Article]. J Biomech Eng Trans ASME. 2013 Dec;135(12):11. PubMed PMID: WOS:000327096500003; English. .
  • Kolanjiyil AV, Kleinstreuer C. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: theory and model validation. Comput Biol Med. 2016 Dec;79:193–204.
  • Kolanjiyil AV, Kleinstreuer C. Computational analysis of aerosol-dynamics in a human whole-lung airway model. J Aerosol Sci. 2017 Dec;114:301–316.
  • Kolanjiyil AV, Kleinstreuer C, Sadikot RT. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: dry powder inhaler application [Article]. Comput Biol Med. 2017 May;84:247–253. PubMed PMID: WOS:000401377700025; English.
  • Islam MS, Saha SC, Sauret E, et al. Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract [Article]. J Aerosol Sci. 2017 Jun;108:29–43. PubMed PMID: WOS:000401045300003; English.
  • Wu D, Miyawaki S, Tawhai MH, et al. A numerical study of water loss rate distributions in mdct-based human airway models [Article]. Ann Biomed Eng. 2015 Nov;43(11):2708–2721. PubMed PMID: WOS:000363238800010; English.
  • Wu D, Tawhai MH, Hoffman EA, et al. A numerical study of heat and water vapor transfer in MDCT-based human airway models [Article]. Ann Biomed Eng. 2014 Oct;42(10):2117–2131. PubMed PMID: WOS:000341908500011; English.
  • Yin YB, Choi JW, Hoffman EA, et al. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation [Article]. J Comput Phys. 2013 Jul;244:168–192. PubMed PMID: WOS:000319456900011; English.
  • Tawhai MH, Pullan AJ, Hunter PJ. Generation of an anatomically based three-dimensional model of the conducting airways. Ann Biomed Eng. 2000 Jul;28(7):793–802. PubMed PMID: WOS:000089490200008; English.
  • Tgavalekos NT, Tawhai M, Harris RS, et al. Identifying airways responsible for heterogeneous ventilation and mechanical dysfunction in asthma: an image functional modeling approach. J Appl Physiol. 2005 Dec;99(6):2388–2397. PubMed PMID: ISI:000233318900044.
  • Vinchurkar S, De Backer L, Vos W, et al. A case series on lung deposition analysis of inhaled medication using functional imaging based computational fluid dynamics in asthmatic patients: effect of upper airway morphology and comparison with in vivo data [Article]. Inhal Toxicol. 2012 Jan;24(2):81–88. PubMed PMID: WOS:000299744800001; English.
  • Usmani OS, Barnes PJ. Assessing and treating small airways disease in asthma and chronic obstructive pulmonary disease. Ann Med. 2012 Mar;44(2):146–156. PubMed PMID: WOS:000300941000005.
  • Van Den Berge M, Ten Hacken NHT, Van der Wiel E, et al. Treatment of the bronchial tree from beginning to end: targeting small airway inflammation in asthma. Allergy. 2013;68(1):16–26.
  • Kenjereš S, Tjin JL. Numerical simulations of targeted delivery of magnetic drug aerosols in the human upper and central respiratory system: a validation study. R Soc Open Sci. 2017;4(12):170873.
  • Xie Y, Zeng P, Siegel R, et al. Magnetic deposition of aerosols composed of aggregated superparamagnetic nanoparticles. Pharm Res. 2010;27(5):855–865.
  • Xie YY, Longest PW, Xu YH, et al. In vitro and in vivo lung deposition of coated magnetic aerosol particles. J Pharm Sci. 2010 Nov;99(11):4658–4668. PubMed PMID: ISI:000283477100022
  • Hindle M, Longest PW. Evaluation of enhanced condensational growth (ECG) for controlled respiratory drug delivery in a mouth-throat and upper tracheobronchial model. Pharm Res. 2010;27(9):1800–1811.
  • Longest PW, Hindle M. CFD simulations of enhanced condensational growth (ECG) applied to respiratory drug delivery with comparisons to in vitro data. J Aerosol Sci. 2010;41:805–820.
  • Hindle M, Longest PW. Condensational growth of combination drug-excipient submicrometer particles for targeted high efficiency pulmonary delivery: evaluation of formulation and delivery device. J Pharm Pharmacol. 2012;64(9):1254–1263.
  • Longest PW, Hindle M. Numerical model to characterize the size increase of combination drug and hygroscopic excipient nanoparticle aerosols. Aerosol Sc Technol. 2011;45:884–899.
  • Longest PW, Tian G, Li X, et al. Performance of combination drug and hygroscopic excipient submicrometer particles from a softmist inhaler in a characteristic model of the airways. Ann Biomed Eng. 2012;40(12):2596–2610.
  • Tian G, Longest PW, Li X, et al. Targeting aerosol deposition to and within the lung airways using excipient enhanced growth. J Aerosol Med Pulm Drug Deliv. 2013;26(5):248–265.
  • Longest PW, Golshahi L, Hindle M. Improving pharmaceutical aerosol delivery during noninvasive ventilation: effects of streamlined components. Ann Biomed Eng. 2013;41(6):1217–1232.
  • Longest PW, Tian G, Hindle M. Improving the lung delivery of nasally administered aerosols during noninvasive ventilation - An application of enhanced condensational growth (ECG). J Aerosol Med Pulm Drug Deliv. 2011;24(2):103–118.
  • Walenga RL, Tian G, Hindle M, et al. Variability in nose-to-lung aerosol delivery. J Aerosol Sci. 2014;78:11–29.
  • Golshahi L, Tian G, Azimi M, et al. The use of condensational growth methods for efficient drug delivery to the lungs during noninvasive ventilation high flow therapy. Pharm Res. 2013;30:2917–2930.
  • Golshahi L, Walenga RL, Longest PW, et al. Development of a transient flow aersol mixer-heater system for lung delivery of nasally administered aerosols using a nasal cannula. Aerosol Sc Technol. 2014;48:1009–1021.
  • Longest PW, Walenga RL, Son Y-J, et al. High efficiency generation and delivery of aerosols through nasal cannula during noninvasive ventilation. J Aerosol Med Pulm Drug Deliv. 2013;26(5):266–279.
  • Golshahi L, Longest PW, Azimi M, et al. Intermittent aerosol delivery to the lungs during high flow nasal cannula therapy. Respir Care. 2014;59(10):1476–1486.
  • Longest PW, Golshahi L, Behara SRB, et al. Efficient nose-to-lung (N2L) aerosol delivery with a dry powder inhaler. J Aerosol Med Pulm Drug Deliv. 2015;28(3):189–201.
  • Walenga RL, Longest PW, Kaviratna A, et al. Aerosol drug delivery during noninvasive positive pressure ventilation: effects of intersubject variability and excipient enhanced growth. J Aerosol Med Pulm Drug Deliv. 2017;30(3):190–205.
  • Rubin BK, Fink JB. Aerosol therapy for children. Respir Care Clin N Am. 2001;7(2):175–213.
  • Fink JB. Aerosol delivery to ventilated infant and pediatric patients. Respir Care. 2004;49(6):653–665.
  • Fok TF, Monkman S, Dolovich M, et al. Efficiency of aerosol medication delivery from a metered dose inhaler versus jet nebulizer in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 1996 May;21(5):301–309. PubMed PMID: WOS:A1996UM59400006
  • Goralski JL, Davis SD. Breathing easier: addressing the challenges of aerosolizing medications to infants and preschoolers. Respir Med. 2014;108(8):1069–1074.
  • Everard ML. Inhaler devices in infants and children: challenges and solutions. J Aerosol Med Deposition Clearance Effects Lung. 2004 Sum;17(2):186–195. PubMed PMID: WOS:000222809000011.
  • DiBlasi RM. Clinical controversies in aerosol therapy for infants and children. Respir Care. 2015;60(6):894–916.
  • Ari A, Atalay OT, Harwood R, et al. Influence of nebulizer type, position, and bias flow on aerosol drug delivery in simulated pediatric and adult lung models during mechanical ventilation. Respir Care. 2010 Jul;55(7):845–851. PubMed PMID: WOS:000280037300002
  • El Taoum KK, Xi J, Kim JW, et al. In vitro evaluation of aerosols delivered via the nasal route. Respir Care. 2015;60(7):1015–1025.
  • Carrigy NB, Ruzycki CA, Golshahi L, et al. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation. J Aerosol Med Pulm Drug Deliv. 2014;27(3):149–169.
  • Xi J, Berlinski A, Zhou Y, et al. Breathing resistance and ultrafine particle deposition in nasalâ-laryngeal airways of a newborn, an infant, a child, and an adult. Ann Biomed Eng. 2012;40(12):2579–2595.
  • Xi J, Si X, Zhou Y, et al. Growth of nasal and laryngeal airways in children: implications in breathing and inhaled aerosol dynamics. Respir Care. 2014;59(2):263–273.
  • Xi JX, Si XH, Kim JW, et al. Simulation of airflow and aerosol deposition in the nasal cavity of a 5-year-old child. J Aerosol Sci. 2011 Mar;42(3):156–173. PubMed PMID: WOS:000288921400002
  • Xi J, Longest PW. Characterization of submicrometer aerosol deposition in extrathoracic airways during nasal exhalation. Aerosol Sc Technol. 2009;43:808–827.
  • Shakked T, Broday DM, Katoshevski D, et al. Administration of aerosolized drugs to infants by a hood: A three-dimensional numerical study. J Aerosol Med Deposition Clearance Effects Lung. 2006 Win;19(4):533–542. PubMed PMID: WOS:000243413300011.
  • Longest PW, Azimi M, Hindle M. Optimal delivery of aerosols to infants during mechanical ventilation. J Aerosol Med Pulm Drug Deliv. 2014;27(5):371–385.
  • Longest PW, Tian G. Development of a new technique for the efficient delivery of aerosolized medications to infants on mechanical ventilation. Pharm Res. 2015;32:321–336.
  • Chen WH, Lee KH, Mutuku JK, et al. Flow dynamics and PM2.5 deposition in healthy and asthmatic airways at different inhalation statuses [Article]. Aerosol Air Qual Res. 2018 Apr;18(4):866–883. PubMed PMID: WOS:000428952900004; English.
  • De Backer JW, Vos WG, Devolder A, et al. Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation [Article]. J Biomech. 2008;41(1):106–113. PubMed PMID: WOS:000253062100014; English.
  • De Backer JW, Vos WG, Vinchurkar SC, et al. Validation of computational fluid dynamics in CT-based airway models with SPECT/CT. Radiology. 2010 Dec;257(3):854–862. PubMed PMID: WOS:000284469300031
  • Vos W, De Backer J, Poli G, et al. Novel functional imaging of changes in small airways of patients treated with extrafine beclomethasone/formoterol [Article]. Respiration. 2013;86(5):393–401. PubMed PMID: WOS:000329046200006; English.
  • Greenblatt EE, Winkler T, Harris RS, et al. Regional ventilation and aerosol deposition with helium-oxygen in bronchoconstricted asthmatic lungs [Article]. J Aerosol Med Pulm Drug Deliv. 2016 Jun;29(3):260–272. PubMed PMID: WOS:000377378100086; English.
  • Lalas A, Nousias S, Kikidis D, et al. Substance deposition assessment in obstructed pulmonary system through numerical characterization of airflow and inhaled particles attributes [Article; Proceedings Paper]. BMC Med Inform Decis Mak. 2017 Dec;17:20. PubMed PMID: WOS:000418840100003; English.
  • Martonen TB, Guan XF. Effects of tumors on inhaled pharmacologic drugs I. Flow patterns. Cell Biochem Biophys. 2001;35(3):233–243. PubMed PMID: ISI:000172754200002.
  • Srivastav VK, Kumar A, Shukla SK, et al. Airflow and aerosol-drug delivery in a CT scan based human respiratory tract with tumor using CFD [Article]. J Appl Fluid Mech. 2014 Apr;7(2):345–356. PubMed PMID: WOS:000341064000014; English
  • Xi JX, Kim J, Si XHA, et al. CFD modeling and image analysis of exhaled aerosols due to a growing bronchial tumor: towards non-invasive diagnosis and treatment of respiratory obstructive diseases [Article]. Theranostics. 2015;5(5):443–455. PubMed PMID: WOS:000353063800001; English. .
  • Xi JX, Si XHA, Kim J, et al. Exhaled aerosol pattern discloses lung structural abnormality: a sensitivity study using computational modeling and fractal analysis [Article]. PLoS One. 2014 Aug;9(8):12. PubMed PMID: WOS:000343231900078; English.
  • De Backer J, Vos W, Vinchurkar S, et al. The effects of extrafine beclometasone/formoterol (BDP/F) on lung function, dyspnea, hyperinflation, and airway geometry in COPD patients: novel insight using functional respiratory imaging [Article]. J Aerosol Med Pulm Drug Deliv. 2015 Apr;28(2):88–99. PubMed PMID: WOS:000352058200003; English.
  • De Backer LA, Vos W, De Backer J, et al. The acute effect of budesonide/formoterol in COPD: a multi-slice computed tomography and lung function study [Article]. Eur Respir J. 2012 Aug;40(2):298–305. PubMed PMID: WOS:000307291700006; English.
  • De Backer LA, Vos WG, Salgado R, et al. Functional imaging using computer methods to compare the effect of salbutamol and ipratropium bromide in patient-specific airway models of COPD [Article]. Int J Chronic Obstr Pulm Dis. 2011;6:637–646. PubMed PMID: WOS:000208709800068; English. .
  • Oakes JM, Marsden AL, Grandmont C, et al. Airflow and particle deposition simulations in health and emphysema: from in vivo to in silico animal experiments. Ann Biomed Eng. 2014 Apr;42(4):899–914. PubMed PMID: WOS:000333010900018. .
  • Sul B, Oppito Z, Jayasekera S, et al. Assessing airflow sensitivity to healthy and diseased lung conditions in a computational fluid dynamics model validated in vitro. J Biomech Eng T Asme. 2018 May;140(5):051009-051009-14. PubMed PMID: WOS:000428700000009; English.
  • Awadalla M, Miyawaki S, Abou Alaiwa MH, et al. Early airway structural changes in cystic fibrosis pigs as a determinant of particle distribution and deposition [Article]. Ann Biomed Eng. 2014 Apr;42(4):915–927. PubMed PMID: WOS:000333010900019; English.
  • Bos AC, Van Holsbeke C, De Backer JW, et al. Patient-specific modeling of regional antibiotic concentration levels in airways of patients with cystic fibrosis: are we dosing high enough?. PLoS One. 2015;10(3):e0118454.
  • Bäckman P, Arora S, Couet W, et al. Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs. Eur J Pharm Sci. 2018;113:41–52.
  • Rygg A, Hindle M, Longest PW. Linking suspension nasal spray drug deposition patterns to pharmacokinetic profiles: A proof-of-concept study using computational fluid dynamics. J Pharm Sci. 2016;105:1995–2004.
  • Bush ML, Frederick CB, Kimbell JS, et al. A CFD–PBPK hybrid model for simulating gas and vapor uptake in the rat nose. Toxicol Appl Pharmacol. 1998;150(1):133–145.
  • Rygg A, Hindle M, Longest PW. Absorption and clearance of pharmaceutical aerosols in the human nose: effects of nasal spray suspension particle size and properties. Pharm Res. 2016;33:909–921.
  • Rygg A, Longest PW. Absorption and clearance of pharmaceutical aerosols in the human nose: development of a CFD model. J Aerosol Med Pulm Drug Deliv. 2016;29(5):416–431.
  • Longest PW, Rygg A, Hindle M. Bioequivalence testing: can systemic pharmacokinetic profiles from corticosteriod nasal sprays be used to elucidate local drug deposition within the nose?. Respir Drug Delivery. 2016;2016(1):175–184.
  • Gelb AF, Taylor CF, Nussbaum E, et al. Alveolar and airway sites of nitric oxide inflammation in treated asthma. Am J Respir Crit Care Med. 2004;170(7):737–741.
  • Usmani OS. Treating the small airways. Respiration. 2012;84(6):441–453.
  • Delvadia R, Longest PW, Byron PR. In vitro tests for aerosol deposition. I. Scaling a physical model of the upper airways to predict drug deposition variation in normal humans. J Aerosol Med. 2012;25(1):32–40.
  • Behara SRB, Longest PW, Farkas DR, et al. Development and comparison of new high-efficiency dry powder inhalers for carrier-free formulations. J Pharm Sci. 2014;103:465–477.
  • Longest PW, Son Y-J, Holbrook LT, et al. Aerodynamic factors responsible for the deaggregation of carrier-free drug powders to form micrometer and submicrometer aerosols. Pharm Res. 2013;30:1608–1627.
  • Son Y-J, Longest PW, Tian G, et al. Evaluation and modification of commercial dry powder inhalers for the aerosolization of submicrometer excipient enhanced growth (EEG) formulation. Eur J Pharm Sci. 2013;49:390–399.
  • Olsson B, Berg E, Svensson M. Comparing aerosol size distributions that penetrate mouth-throat models under realistic inhalation conditions. Respir Drug Delivery. 2010;2010:225–234.
  • Longest PW, Hindle M. Condensational growth of combination drug-excipient submicrometer particles: comparison of CFD predictions with experimental results. Pharm Res. 2012;29(3):707–721.
  • Son Y-J, Longest PW, Hindle M. Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: effect of spray drying process conditions on aerosol performance. Int J Pharm. 2013;443:137–145.
  • Tian G, Hindle M, Longest PW. Targeted lung delivery of nasally administered aerosols. Aerosol Sc Technol. 2014;48(4):434–449.
  • Longest PW. CFD and hybrid deposition modeling: when and why the approach is useful. Respir Drug Delivery. 2018;1:123–136.
  • Behara SRB, Farkas DR, Hindle M, et al. Development of a high efficiency dry powder inhaler: effects of capsule chamber design and inhaler surface modifications. Pharm Res. 2014;31:360–372.
  • Newman S, Salmon A, Nave R, et al. High lung depostion of 99mTc-labeled ciclesonide administered via HFA-MDI to patients with asthma. Respir Med. 2006;100:375–384.
  • Katz I, Pichelin M, Montesantos S, et al. The influence of lung volume during imaging on CFD within realistic airway models. Aerosol Sc Technol. 2017;51(2):214–223.
  • Scheinherr A, Bailly L, Boiron O, et al. Realistic glottal motion and airflow rate during human breathing. Med Eng Phys. 2015;37(9):829–839.
  • Lee SL, Adams WP, Li BV, et al. In vitro considerations to support bioequivalence of locally acting drugs in dry powder inhalers for lung diseases. Aaps J. 2009 Mar;11(3):414–423. PubMed PMID: WOS:000290204800015
  • Borgstrom L, Olsson B, Thorsson L. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aerosol Med. 2006;19:473–483.
  • Heyder J, Gebhart J, Rudolf G, et al. Deposition of particles in the human respiratory tract in the size range of 0.005–15 microns. J Aerosol Sci. 1986;17(5):811–825.
  • Stahlhofen W, Rudolf G, James A. Intercomparison of experimental regional aerosol deposition data. J Aerosol Med. 1989;2(3):285–308.
  • Grgic B, Finlay WH, Burnell PKP, et al. In vitro intersubject and intrasubject deposition measurements in realistic mouth-throat geometries. J Aerosol Sci. 2004 Aug;35(8):1025–1040. PubMed PMID: ISI:000223521800007
  • Golshahi L, Finlay WH, Olfert JS, et al. Deposition of inhaled ultrafine aerosols in replicas of nasal airways of infants. Aerosol Sc Technol. 2010;44:741–752.
  • Storey-Bishoff J, Noga M, Finlay WH. Deposition of micrometer-sized aerosol particles in infant nasal airway replicas. Aerosol Sci. 2008;39:1055–1065.
  • Tavernini S, Church TK, Lewis DA, et al. Deposition of micrometer-sized aerosol particles in neonatal nasal airway replicas. Aerosol Sc Technol. 2018;52(4):407–419.
  • Tgavalekos NT, Musch G, Harris RS, et al. Relationship between airway narrowing, patchy ventilation and lung mechanics in asthmatics. Eur Respir J. 2007;29(6):1174–1181.
  • Pozin N, Montesantos S, Katz I, et al. A tree-parenchyma coupled model for lung ventilation simulation. Int J Numer Method Biomed Eng. 2017;33(11):e2873.
  • Corcoran TE. Imaging in aerosol medicine. Respir Care. 2015;60(6):850–857.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.