1,231
Views
35
CrossRef citations to date
0
Altmetric
Review

Peptide-mediated drug delivery across the blood-brain barrier for targeting brain tumors

, ORCID Icon, , & ORCID Icon
Pages 583-605 | Received 27 Jan 2019, Accepted 01 May 2019, Published online: 20 May 2019

References

  • Barar J, Rafi MA, Pourseif MM, et al. Blood-brain barrier transport machineries and targeted therapy of brain diseases. BioImpacts. 2016;6:225–248.
  • Stock AD, Gelb S, Pasternak O, et al. The blood brain barrier and neuropsychiatric lupus: new perspectives in light of advances in understanding the neuroimmune interface. Autoimmun Rev. 2017;16:612–619.
  • Dong X. Current strategies for brain drug delivery. Theranostics. 2018;8:1481–1493.
  • Sanchez-Covarrubias L, Slosky LM, Thompson BJ, et al. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des. 2014;20:1422–1449. Epub 2013 Jun 25.
  • Persidsky Y, Ramirez SH, Haorah J, et al. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006;1:223–236.
  • Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol. 2008;6:179–192.
  • Martin-Padura I, Lostaglio S, Schneemann M, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. 1998;142:117–127.
  • Gonzalez-Mariscal L, Betanzos A, Nava P, et al. Tight junction proteins. Prog Biophys Mol Biol. 2003;81:1–44.
  • Johnsen KB, Burkhart A, Melander F, et al. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci Rep. 2017;7:10396.
  • McConnell HL, Kersch CN, Woltjer RL, et al. The translational significance of the neurovascular unit. J Biol Chem. 2017;292:762–770. Epub 2016 Dec 7.
  • Muoio V, Persson PB, Sendeski MM. The neurovascular unit – concept review. Acta Physiol. 2014;210:790–798. Epub 2014 Mar 19.
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–185. Epub 2005 May 26.
  • Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 2011;71:1018–1039. Epub 2011 Jul 23.
  • Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–4200. Epub 2010 Dec 3.
  • Kowianski P, Lietzau G, Steliga A, et al. The astrocytic contribution to neurovascular coupling – still more questions than answers? Neurosci Res. 2013;75:171–183. Epub 2013 Feb 20.
  • Mahmoud S, Gharagozloo M, Simard C, et al. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 2019;8:1–27.
  • Weber B, Barros LF. The astrocyte: powerhouse and recycling center. Cold Spring Harb Perspect Biol. 2015;7:1–15.
  • Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005;7:452–464. Epub 2005 Oct 11.
  • Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25. Epub 2009 Aug 12.
  • Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. Neurorx. 2005;2:3–14. Epub 2005 Feb 18.
  • Vorbrodt AW, Dobrogowska DH. Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res Brain Res Rev. 2003;42:221–242. Epub 2003 Jun 7.
  • Omidi Y, Barar J. Impacts of blood-brain barrier in drug delivery and targeting of brain tumors. Bioimpacts. 2012;2:5–22.
  • Gynther M, Laine K, Ropponen J, et al. Large neutral amino acid transporter enables brain drug delivery via prodrugs. J Med Chem. 2008;51:932–936. Epub 2008 Jan 26.
  • Lage H. ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents. 2003;22:188–199. Epub 2003 Sep 19.
  • Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11:1156–1166. Epub 2001 Jul 4.
  • Miller DS. Regulation of ABC transporters at the blood-brain barrier. Clin Pharmacol Ther. 2015;97:395–403. Epub 2015 Feb 12.
  • Smith MW, Gumbleton M. Endocytosis at the blood-brain barrier: from basic understanding to drug delivery strategies. J Drug Target. 2006;14:191–214. Epub 2006 Jun 17.
  • Kumagai AK, Eisenberg JB, Pardridge WM. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J Biol Chem. 1987;262:15214–15219. Epub 1987 Nov 5.
  • Katritzky AR, Kuanar M, Slavov S, et al. Correlation of blood-brain penetration using structural descriptors. Bioorg Med Chem. 2006;14:4888–4917.
  • Klepsch F, Vasanthanathan P, Ecker GF. Ligand and structure-based classification models for prediction of P-glycoprotein inhibitors. J Chem Inf Model. 2014;54:218–229. Epub 2013 Sep 21.
  • Palestro PH, Gavernet L, Estiu GL, et al. Docking applied to the prediction of the affinity of compounds to P-glycoprotein. Biomed Res Int. 2014;2014:358425. Epub 2014 Jul 2.
  • Penzotti JE, Lamb ML, Evensen E, et al. A computational ensemble pharmacophore model for identifying substrates of P-glycoprotein. J Med Chem. 2002;45:1737–1740. Epub 2002 Apr 19.
  • Prachayasittikul V, Mandi P, Prachayasittikul S, et al. Exploring the chemical space of P-glycoprotein interacting compounds. Mini Rev Med Chem. 2017;17:1332–1345. Epub 2016 Jan 23.
  • Pardridge WM. Drug and gene targeting to the brain with molecular trojan horses. Nat Rev Drug Discov. 2002;1:131–139. Epub 2002 Jul 18.
  • Blumling Iii JP, Silva GA. Targeting the brain: advances in drug delivery. Curr Pharm Biotechnol. 2012;13:2417–2426. Epub 2012 Sep 29.
  • Wong HL, Chattopadhyay N, Wu XY, et al. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev. 2010;62:503–517. Epub 2009 Nov 17.
  • Khalil IA, Kogure K, Akita H, et al. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58:32–45. Epub 2006 Mar 2.
  • Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–631. Epub 2014 Oct 24.
  • Dani JA. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int Rev Neurobiol. 2015;124:3–19. Epub 2015 Oct 17.
  • Hogg RC, Raggenbass M, Bertrand D. Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol. 2003;147:1–46. Epub 2003 Jun 5.
  • McKay BE, Placzek AN, Dani JA. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol. 2007;74:1120–1133. Epub 2007 Aug 11.
  • Stokes C, Treinin M, Papke RL. Looking below the surface of nicotinic acetylcholine receptors. Trends Pharmacol Sci. 2015;36:514–523. Epub 2015 Jun 13.
  • Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–w303. Epub 2018 May 23.
  • Eswar N, Eramian D, Webb B, et al. Protein structure modeling with MODELLER. Methods Mol Biol. 2008;426:145–159. Epub 2008 Jun 11.
  • Daneman R. The blood-brain barrier in health and disease. Ann Neurol. 2012;72:648–672. Epub 2013 Jan 3.
  • Neuwelt EA, Bauer B, Fahlke C, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011;12:169–182. Epub 2011 Feb 19.
  • Liebner S, Dijkhuizen RM, Reiss Y, et al. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol. 2018;135:311–336. Epub 2018 Feb 8.
  • Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19:1584–1596. Epub 2013Dec 7.
  • Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. Biomed Res Int. 2015;2015:320941. Epub 2015 Apr 14.
  • Dowd CF, Halbach VV, Higashida RT. Meningiomas: the role of preoperative angiography and embolization. Neurosurg Focus. 2003;15:E10. Epub 2004 Sep 10.
  • Groothuis DR, Vriesendorp FJ, Kupfer B, et al. Quantitative measurements of capillary transport in human brain tumors by computed tomography. Ann Neurol. 1991;30:581–588. Epub 1991 Oct 1.
  • Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109. Epub 2007 Jul 10.
  • Chen R, Smith-Cohn M, Cohen AL, et al. Glioma subclassifications and their clinical significance. Neurotherapeutics. 2017;14:284–297. Epub 2017 Mar 11.
  • Long DM. Capillary ultrastructure and the blood-brain barrier in human malignant brain tumors. J Neurosurg. 1970;32:127–144. Epub 1970 Feb 1.
  • Luissint AC, Artus C, Glacial F, et al. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9:23. Epub 2012 Nov 13.
  • Dhawan P, Singh AB, Deane NG, et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest. 2005;115:1765–1776. Epub 2005 Jun 21.
  • Jia W, Lu R, Martin TA, et al. The role of claudin-5 in blood-brain barrier (BBB) and brain metastases (review). Mol Med Rep. 2014;9:779–785. Epub 2013 Dec 25.
  • Feldman GJ, Mullin JM, Ryan MP. Occludin: structure, function and regulation. Adv Drug Deliv Rev. 2005;57:883–917. Epub 2005 Apr 12.
  • Khan N, Asif AR. Transcriptional regulators of claudins in epithelial tight junctions. Mediators Inflamm. 2015;2015:219843. Epub 2015 May 8.
  • Stamatovic SM, Johnson AM, Keep RF, et al. Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers. 2016;4:e1154641. Epub 2016 May 4.
  • Runkle EA, Mu D. Tight junction proteins: from barrier to tumorigenesis. Cancer Lett. 2013;337:41–48. Epub 2013 Jun 8.
  • Liebner S, Fischmann A, Rascher G, et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000;100:323–331. Epub 2000 Aug 31.
  • Lamszus K, Laterra J, Westphal M, et al. Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas. Int J Dev Neurosci. 1999;17:517–530. Epub 1999 Nov 26.
  • van Assema DM, Lubberink M, Rizzu P, et al. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: effect of polymorphisms in the ABCB1 gene. EJNMMI Res. 2012;2:57. Epub 2012 Oct 17.
  • Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev. 1999;36:179–194. Epub 2000 Jun 6.
  • DeMars KM, Yang C, Hawkins KE, et al. Spatiotemporal changes in P-glycoprotein levels in brain and peripheral tissues following ischemic stroke in rats. J Exp Neurosci. 2017;11:1179069517701741. Epub 2017 May 5.
  • Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos. 2014;42:623–631. Epub 2014 Feb 5.
  • Asgharzadeh MR, Barar J, Pourseif MM, et al. Molecular machineries of pH dysregulation in tumor microenvironment: potential targets for cancer therapy. Bioimpacts. 2017;7:115–133.
  • Padma VV. An overview of targeted cancer therapy. Biomedicine (Taipei). 2015;5:19. Epub 2015 Nov 29.
  • Nasiri H, Valedkarimi Z, Aghebati-Maleki L, et al. Antibody-drug conjugates: promising and efficient tools for targeted cancer therapy. J Cell Physiol. 2018;233:6441–6457.
  • Srinivasarao M, Low PS. Ligand-targeted drug delivery. Chem Rev. 2017;117:12133–12164. Epub 2017 Sep 13.
  • Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448:39–43. Epub 2007 Jun 19.
  • Zhan C, Yan Z, Xie C, et al. 2 of Ophiophagus hannah toxin b binds with neuronal nicotinic acetylcholine receptors and enhances intracranial drug delivery. Mol Pharm. 2010;7:1940–1947. Epub 2010 Oct 23.
  • Banks WA. Peptides and the blood-brain barrier. Peptides. 2015;72:16–19. Epub 2015 Mar 26.
  • Hamilton GS. Antibody-drug conjugates for cancer therapy: the technological and regulatory challenges of developing drug-biologic hybrids. Biologicals. 2015;43:318–332. Epub 2015 Jun 8.
  • Jain N, Smith SW, Ghone S, et al. Current ADC linker chemistry. Pharm Res. 2015;32:3526–3540.
  • Parslow AC, Parakh S, Lee FT, et al. Antibody-drug conjugates for cancer therapy. Biomedicines. 2016;4. Epub 2017 May 26.
  • Firer MA, Gellerman G. Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol. 2012;5:70. Epub 2012 Nov 13.
  • Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117:1736.
  • Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26:925.
  • Boiziau C, Nikolski M, Mordelet E, et al. A peptide targeting inflammatory CNS lesions in the EAE rat model of multiple sclerosis. Inflammation. 2018. Epub 2018 Mar 9.
  • Barar J, Omidi Y. Dysregulated pH in tumor microenvironment checkmates cancer therapy. Bioimpacts. 2013;3:149–162.
  • Omidi Y, Barar J. Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts. 2014;4:55–67.
  • Ackerman ME, Pawlowski D, Wittrup KD. Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther. 2008;7:2233–2240. Epub 2008 Jul 23.
  • Hilchie AL, Sharon AJ, Haney EF, et al. Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. Biochim Biophys Acta. 2016;1858:3195–3204. Epub 2016 Nov 5.
  • Pardridge WM. Receptor-mediated peptide transport through the blood-brain barrier. Endocr Rev. 1986;7:314–330. Epub 1986 Aug 1.
  • Georgieva JV, Brinkhuis RP, Stojanov K, et al. Peptide-mediated blood-brain barrier transport of polymersomes. Angew Chem Int Ed Engl. 2012;51:8339–8342. Epub 2012 Jul 13.
  • Wang Y, Cheetham AG, Angacian G, et al. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev. 2017;110–111:112–126. Epub 2016 Jul 3.
  • Majumdar S, Siahaan TJ. Peptide-mediated targeted drug delivery. Med Res Rev. 2012;32:637–658. Epub 2010 Sep 4.
  • van Zutphen S, Robillard MS, van der Marel GA, et al. Extending solid-phase methods in inorganic synthesis: the first dinuclear platinum complex synthesised via the solid phase. Chem Commun (Camb). 2003;63:4–5. Epub 2003 Apr 3.
  • Zhang P, Cheetham AG, Lock LL, et al. Cellular uptake and cytotoxicity of drug-peptide conjugates regulated by conjugation site. Bioconjug Chem. 2013;24:604–613. Epub 2013 Mar 22.
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–128.
  • Wang Q, Zuo Z. Impact of transporters and enzymes from blood-cerebrospinal fluid barrier and brain parenchyma on CNS drug uptake. Expert Opin Drug Metab Toxicol. 2018;14:961–972. Epub 2018 Aug 18.
  • Bausback HH, Churchill L, Ward PE. Angiotensin metabolism by cerebral microvascular aminopeptidase A. Biochem Pharmacol. 1988;37:155–160. Epub 1988 Jan 15.
  • Brownson EA, Abbruscato TJ, Gillespie TJ, et al. Effect of peptidases at the blood brain barrier on the permeability of enkephalin. J Pharmacol Exp Ther. 1994;270:675–680. Epub 1994 Aug 1.
  • Egleton RD, Davis TP. Development of neuropeptide drugs that cross the blood-brain barrier. Neurorx. 2005;2:44–53. Epub 2005 Feb 18.
  • Vlieghe P, Lisowski V, Martinez J, et al. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15:40–56. Epub 2009 Nov 3.
  • Ma L, Wang C, He Z, et al. Peptide-drug conjugate:a novel drug design approach. Curr Med Chem. 2017;24:3373–3396. Epub 2017 Apr 11.
  • Barar J, Omidi Y. Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer. Bioimpacts. 2014;4:3–14.
  • Deshayes S, Morris MC, Divita G, et al. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci. 2005;62:1839–1849. Epub 2005 Jun 22.
  • Guo Z, Peng H, Kang J, et al. Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications. Biomed Rep. 2016;4:528–534.
  • Das AT, Harwig A, Berkhout B. The HIV-1 tat protein has a versatile role in activating viral transcription. J Virol. 2011;85:9506–9516.
  • Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev. 2005;57:637–651. Epub 2005 Feb 22.
  • Zhang P, Cheetham AG, Lin Y-A, et al. Self-assembled tat nanofibers as effective drug carrier and transporter. ACS Nano. 2013;7:5965–5977.
  • Yandek LE, Pokorny A, Floren A, et al. Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers. Biophys J. 2007;92:2434–2444. Epub 2007 Jan 16.
  • Lang R, Gundlach AL, Kofler B. The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther. 2007;115:177–207. Epub 2007 Jul 3.
  • Izabela R, Jarosław R, Magdalena A, et al. Transportan 10 improves the anticancer activity of cisplatin. Naunyn-Schmiedeberg’s Arch Pharmacol. 2016;389:485–497.
  • Kang MJ, Kim BG, Eum JY, et al. Design of a Pep-1 peptide-modified liposomal nanocarrier system for intracellular drug delivery: conformational characterization and cellular uptake evaluation. J Drug Target. 2011;19:497–505. Epub 2010 Aug 27.
  • Mousavizadeh A, Jabbari A, Akrami M, et al. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review. Colloids Surf B Biointerfaces. 2017;158:507–517. Epub 2017 Jul 25.
  • Gao H, Zhang S, Cao S, et al. Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery. Mol Pharm. 2014;11:2755–2763.
  • Shao K, Huang R, Li J, et al. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release. 2010;147:118–126. Epub 2010 Jul 9.
  • Huang R, Ma H, Guo Y, et al. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of parkinson’s disease. Pharm Res. 2013;30:2549–2559. Epub 2013 May 25.
  • Wang Y, Ying X, Chen L, et al. Electroresponsive nanoparticles improve antiseizure effect of phenytoin in generalized tonic-clonic seizures. Neurotherapeutics. 2016;13:603–613. Epub 2016 May 4.
  • Wang X, Xiong Z, Liu Z, et al. Angiopep-2/IP10-EGFRvIIIscFv modified nanoparticles and CTL synergistically inhibit malignant glioblastoma. Sci Rep. 2018;8:12827.
  • Huey R, Hawthorne S, McCarron P. The potential use of rabies virus glycoprotein-derived peptides to facilitate drug delivery into the central nervous system: a mini review. J Drug Target. 2017;25:379–385. Epub 2016 Sep 2.
  • Oswald M, Geissler S, Goepferich A. Targeting the central nervous system (CNS): a review of rabies virus-targeting strategies. Mol Pharm. 2017;14:2177–2196. Epub 2017 May 19.
  • Barrett GL, Trieu J, Naim T. The identification of leptin-derived peptides that are taken up by the brain. Regul Pept. 2009;155:55–61. Epub 2009 Feb 24.
  • Thomas FC, Taskar K, Rudraraju V, et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res. 2009;26:2486–2494.
  • Costantino L, Gandolfi F, Tosi G, et al. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release. 2005;108:84–96. Epub 2005 Sep 13.
  • Omidi Y. Smart multifunctional theranostics: simultaneous diagnosis and therapy of cancer. BioImpacts. 2011;1:145–147.
  • Watanabe S, Inoue A, Nukiwa T, et al. Comparison of gefitinib versus chemotherapy in patients with non-small cell lung cancer with exon 19 deletion. Anticancer Res. 2015;35:6957–6961. Epub 2015 Dec 8.
  • Baird K, Comis LE, Joe GO, et al. Imatinib mesylate for the treatment of steroid-refractory sclerotic-type cutaneous chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21:1083–1090. Epub 2015 Mar 17.
  • David B, Bsa G. Drug delivery and release systems for targeted tumor therapy. J Pept Sci. 2015;21:186–200.
  • Lu J, Jiang F, Lu A, et al. Linkers having a crucial role in antibody–drug conjugates. Int J Mol Sci. 2016;17:561.
  • Yao H, Jiang F, Lu A, et al. Methods to design and synthesize antibody-drug conjugates (ADCs). Int J Mol Sci. 2016;17:194.
  • Choy CJ, Geruntho JJ, Davis AL, et al. Tunable pH-sensitive linker for controlled release. Bioconjug Chem. 2016;27:824–830. Epub 2016 Feb 18.
  • Jin Y, Huang Y, Yang H, et al. A peptide-based pH-sensitive drug delivery system for targeted ablation of cancer cells. Chem Commun. 2015;51:14454–14457.
  • Gillies ER, Goodwin AP, Fréchet JMJ. Acetals as pH-sensitive linkages for drug delivery. Bioconjugate Chem. 2004;15:1254–1263.
  • Vrettos EI, Mező G, Tzakos AG. On the design principles of peptide–drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J Org Chem. 2018;14:930–954.
  • Pramanik P, Halder D, Jana SS, et al. pH-triggered sustained drug delivery from a polymer micelle having the beta-thiopropionate linkage. Macromol Rapid Commun. 2016;37:1499–1506. Epub 2016 Jul 23.
  • Shen WC, Ryser HJ. Cis-Aconityl spacer between daunomycin and macromolecular carriers: a model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem Biophys Res Commun. 1981;102:1048–1054. Epub 1981 Oct 15.
  • Yang D, Chen W, Hu J. Design of controlled drug delivery system based on disulfide cleavage trigger. J Phys Chem B. 2014;118:12311–12317.
  • Su Y, Hu Y, Du Y, et al. Redox-responsive polymer–drug conjugates based on doxorubicin and chitosan oligosaccharide-g-stearic acid for cancer therapy. Mol Pharm. 2015;12:1193–1202.
  • Lewis Phillips GD, Li G, Dugger DL, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68:9280–9290. Epub 2008 Nov 18.
  • Joseph SC, Blackman BA, Kelly ML, et al. Synthesis, characterization, and biological activity of poly(arginine)-derived cancer-targeting peptides in HepG2 liver cancer cells. J Pept Sci. 2014;20:736–745. Epub 2014 Jun 17.
  • Chen J, Zhao M, Feng F, et al. Tunable thioesters as “reduction” responsive functionality for traceless reversible protein PEGylation. J Am Chem Soc. 2013;135:10938–10941.
  • Zhang R, Yang J, Radford DC, et al. FRET Imaging of enzyme-responsive HPMA copolymer conjugate. Macromol Biosci. 2017;17:1–8.
  • Caculitan NG, Dela Cruz Chuh J, Ma Y, et al. Cathepsin B is dispensable for cellular processing of cathepsin B-cleavable antibody-drug conjugates. Cancer Res. 2017;77:7027–7037. Epub 2017 Oct 20.
  • Fuselier JA, Sun L, Woltering SN, et al. An adjustable release rate linking strategy for cytotoxin-peptide conjugates. Bioorg Med Chem Lett. 2003;13:799–803. Epub 2003 Mar 6.
  • Coin I, Beyermann M, Bienert M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc. 2007;2:3247–3256. Epub 2007 Dec 15.
  • Blencowe CA, Russell AT, Greco F, et al. Self-immolative linkers in polymeric delivery systems. Polym Chem. 2011;2:773–790.
  • Riber CF, Smith AA, Zelikin AN. Self-immolative linkers literally bridge disulfide chemistry and the realm of thiol-free drugs. Adv Healthc Mater. 2015;4:1887–1890. Epub 2015 Jun 26.
  • Smith G. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–1317.
  • Tohidkia MR, Barar J, Asadi F, et al. Molecular considerations for development of phage antibody libraries. J Drug Target. 2012;20:195–208.
  • Zhao A, Tohidkia MR, Siegel DL, et al. Phage antibody display libraries: a powerful antibody discovery platform for immunotherapy. Crit Rev Biotechnol. 2016;36:276–289.
  • Bazan J, Calkosinski I, Gamian A. Phage display–a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccin Immunother. 2012;8:1817–1828.
  • Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, et al. Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov Today. 2013;18:1144–1157.
  • Jafari B, Hamzeh-Mivehroud M, Moosavi-Movahedi AA, et al. Identification of novel single-domain antibodies against FGF7 using phage display technology. SLAS Discov. 2018;23:193–201. Epub 2017 Aug 30.
  • Jalilzadeh-Razin S, Mantegi M, Tohidkia MR, et al. Phage antibody library screening for the selection of novel high-affinity human single-chain variable fragment against gastrin receptor: an in silico and in vitro study. Daru. 2019. Epub 2019 Jan 5.
  • Coomber DW. Panning of antibody phage-display libraries. Standard protocols. Methods Mol Biol. 2002;178:133–145. Epub 2002 Apr 24.
  • Bakhshinejad B, Karimi M, Khalaj-Kondori M. Phage display: development of nanocarriers for targeted drug delivery to the brain. Neural Regen Res. 2015;10:862–865. Epub 2015 Jul 23.
  • Kaymakcalan Z, Sakorafas P, Bose S, et al. Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin Immunol. 2009;131:308–316. Epub 2009 Feb 4.
  • Malcor JD, Payrot N, David M, et al. Chemical optimization of new ligands of the low-density lipoprotein receptor as potential vectors for central nervous system targeting. J Med Chem. 2012;55:2227–2241. Epub 2012 Jan 20.
  • Daniels TR, Bernabeu E, Rodríguez JA, et al. Transferrin receptors and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012;1820:291–317.
  • Lee JH, Engler JA, Collawn JF, et al. Receptor-mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem. 2001;268:2004–2012. Epub 2001 Mar 30.
  • Prades R, Guerrero S, Araya E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials. 2012;33:7194–7205. Epub 2012 Jul 17.
  • Prades R, Oller-Salvia B, Schwarzmaier SM, et al. Applying the retro-enantio approach to obtain a peptide capable of overcoming the blood-brain barrier. Angew Chem Int Ed Engl. 2015;54:3967–3972. Epub 2015 Feb 5.
  • Staquicini FI, Ozawa MG, Moya CA, et al. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest. 2011;121:161–173. Epub 2010 Dec 25.
  • Parton RG. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem. 1994;42:155–166. Epub 1994 Feb 1.
  • Li J, Feng L, Fan L, et al. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials. 2011;32:4943–4950. Epub 2011 Apr 8.
  • Gao H, Qian J, Cao S, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials. 2012;33:5115–5123. Epub 2012 Apr 10.
  • Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of alzheimer’s disease mice. Biomaterials. 2014;35:456–465. Epub 2013 Oct 9.
  • Yang J, Li Y, Zhang T, et al. Development of bioactive materials for glioblastoma therapy. Bioact Mater. 2016;1:29–38.
  • Charles NA, Holland EC, Gilbertson R, et al. The brain tumor microenvironment. Glia. 2011;59:1169–1180.
  • van de Donk NW, Dhimolea E. Brentuximab vedotin. mAbs. 2012;4:458–465.
  • Traynor K. Ado-trastuzumab emtansine approved for advanced breast cancer. Am J Health Syst Pharm. 2013;70:562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.