357
Views
6
CrossRef citations to date
0
Altmetric
Review

Hyaluronan-based delivery of therapeutic oligonucleotides for treatment of human diseases

Pages 621-637 | Received 20 Feb 2019, Accepted 08 May 2019, Published online: 20 May 2019

References

  • Tool BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4(7):528–539.
  • Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23(12):H41–H56.
  • Hagedorn PH, Hansen BR, Koch T, et al. Managing the sequence-specificity of antisense oligonucleotides in drug discovery. Nucleic Acid Res. 2017;45(5):2262–2282.
  • Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.
  • Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acid Res. 2016;44(14):6518–6548.
  • Zamecnik PC, Stephenson ML. Inhibition of Roas Sarcoma virus replication and cell transformation by a specific oligonucleotide. Proc Natl Acad Sci USA. 1978;75(1):280–284.
  • Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acid Res. 2016;44(14):6549–6563.
  • Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017;35(3):238–248.
  • Boiziau C, Kurfurst R, Cazenave C, et al. Inhibition of translation by antisense oligonucleotides via an RNase-H independent mechanism. Nucleic Acid Res. 1991;19(5):1113–1119.
  • Lennox KA, Behlke MA. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acid Res. 2016;44(2):863–877.
  • Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14.
  • Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13(8):622–638.
  • Gebert LF, Rebhan MA, Crivelli SE, et al. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acid Res. 2014;42(1):609–621.
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811.
  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–498.
  • DeVincenzo J, Lambkin-Williams R, Wilkinson T, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA. 2010;107(19):8800–8805.
  • Kanasty R, Dorkin JR, Vegas A, et al. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967–977.
  • Nimjee SM, White RR, Becker RC, et al. Aptamers as Therapeutics. Annu Rev Rharmacol Toxicol. 2017;57:61–79.
  • Mann MJ. Transcription factor decoys: a new model for disease intervention. Ann New York Acad Sci. 2005;1058:128–139.
  • Kruspe S, Giangrande PH. Aptamer-siRNA chimeras: discovery, progress and future prospects. Biomedicines. 2017;5(3). DOI:10.3390/biomedicines5030045
  • Kreig AM. CpG still rocks! Update on an accidental drug. Nucleic Acid Ther. 2012;22(2):77–89.
  • Balazs EA, Denlinger JL. Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol. 1993;39:3–9.
  • Echigo R, Mochizuki M, Nishimura R, et al. Suppressive effect of hyaluronan on chondrocyte apoptosis in experiment induced acute osteoarthritis in dog. J Vet Med Sci. 2006;68(8):899–902.
  • Miyazaki T, Miyauchi S, Nakamura T, et al. The effect of sodium hyaluronate on the growth of rabbit cornea epithelial cells in vitro. J Ocul Pharmacol Ther. 1996;12(4):409–415.
  • Frenkel JS. The role of hyaluronan in wound healing. Int Wound J. 2014;11(2):159–163.
  • Dechert TA, Ducale AE, Ward SI, et al. Hyaluronan in human acute and chronic dermal wounds. Wound Repair Regener. 2006;14(3):252–258.
  • Leach JB, Schmidt CE. Hyaluronan. Encyclopedia of biomaterials and biomedical engineering. New York (NY): Marcel Dekker; 2004. p. 779–789.
  • Toole BP, Ghatak S, Misra S. Hyaluronan oligosaccharides as a potential anticancer therapeutic. Curr Pharm Biotechnol. 2008;9(4):249–252.
  • Stern R, Kogan MJ, Jedrzejas MJ, et al. The many ways to cleave hyaluronan. Biotechnol Adv. 2007;25(6):537–557.
  • Stern R. Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol. 2004;83(7):317–325.
  • Cui X, Xu H, Zhou S, et al. Evaluation of angiogenic activities of hyaluronan oligosaccharides of defined minimum size. Life Sci. 2009;85(15–16):573–577.
  • Menzel EJ, Farr C. Hyaluronidase and its substrate hyaluronan: biochemistry, biological activities and therapeutic uses. Cancer Lett. 1998;131(1):3–11.
  • Oh EJ, Park K, Kim KS, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release. 2010;141(1):2–12.
  • Bradbury J. A therapeutic future for CD44 in inflammation? Lancet. 2002;359(9322):2008.
  • Banerji S, Ni J, Wang SX, et al. LIVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 1999;144(4):789–801.
  • Zhou B, Oka JA, Singh A, et al. Expression, processing, and glycosaminoglycan binding activity of the recombinant human 315-kDa hyaluronic acid receptor for endocytosis (HARE). J Biol Chem. 2007;282(5):2785–2797.
  • Christner JE, Brown ML, Dziewiatkowski DD. Interaction of cartilage proteoglycans with hyaluronic acid. The role of the hyaluronic acid carboxyl groups. Biochem J. 1977;167(3):711–716.
  • Graça A, Gonçalves LM, Raposo S, et al. Useful in vitro tyechniques to evaluate the mucoadhesive properties of hyaluronic acid-based ocular delivery systems. Pharmaceutics. 2018;10(3):110.
  • Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999;1462(1–2):55–70.
  • Park K, Yang J-A, Lee M-Y, et al. Reducible hyaluronic acid−siRNA Conjugate for target specific gene silencing. Bioconjug Chem. 2013;24(7):1201–1209.
  • Jang YL, Ku SH, So JL, et al. Hyaluronic acid−siRNA conjugate/reducible polyethyleneimine complexes for targeted siRNA delivery. J Nanosci Nanotechnol. 2014;14(10):7388–7394.
  • Kim S-Y, Heo MB, Hwang G-S, et al. Multivalent polymer nanocomplex targeting endosomal receptor of immune cells for enhanced antitumor and systemic memory response. Angew Chem Int Ed. 2015;54(28):8139–8143.
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov. 2006;5(6):471–484.
  • Lee H, Mok H, Lee S, et al. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J Control Release. 2007;119(2):245–252.
  • Han S-E, Kang H, Shim GY, et al. Cationic derivatives of biocompatible hyaluronic acids delivery of siRNA and antisense oligonucleotides. J Drug Target. 2009;17(2):123–132.
  • Jiang G, Park K, Kim J, et al. Target specific intracellular delivery of siRNA/PEI-HA complex by receptor mediated endocytosis. Mol Pharm. 2009;6(3):727–737.
  • Park K, Hong SW, Hur W, et al. Target specific systemic delivery of TGF-β siRNA/(PEI-SS)-g-HA complex for the treatment of liver cirrhosis. Biomaterials. 2011;32(21):4951–4958.
  • Ganesh S, Iyer AK, Morrissey DV, et al. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials. 2013;34(13):3489–3502.
  • Tripathi SK, Gupta S, Gupta KC, et al. Efficient DNA and siRNA delivery with biodegradable cationic hyaluronic acid conjugates. RSC Adv. 2013;3(36):15687–15697.
  • Yang X, Iyer AK, Singh A, et al. Claster of differentiation 44 targeted hyaluronic acid based nanoparticles for MDR1 siRNA delivery to overcome drug resistance in ovarian cancer. Pharm Res. 2015;32(6):2097–2109.
  • Parayath NN, Parikh A, Amiji MM. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microRNA-125b. Nano Lett. 2018;18(6):3571–3579.
  • Park K, Lee M-Y, Kim KS, et al. Target specific tumor treatment by VEGF siRNA complexed with reducible polyethyleneimine-hyaluronic acid conjugate. Biomaterials. 2010;31(19):5258–5265.
  • Forrest ML, Koerber JT, Pack DW. A degradable polyethyleneimine derivative with low toxicity for highly efficient gene delivery. Bioconjug Chem. 2003;14(5):934–940.
  • Shen Y, Li Q, Tu J, et al. Synthesis and characterization of low molecular weight hyaluronic acid-based cationic micelles for efficient siRNA delivery. Carbohydr Polym. 2009;77(1):95–104.
  • Shen Y, Wang B, Lu Y, et al. A novel tumor-targeted delivery system with hydrophobized hyaluronic acid-spermine conjugates (HHSCs) for efficient receptor-mediated siRNA delivery. Int J Pharm. 2011;414(1–2):233–243.
  • Heo R, Yoon HY, Ko H, et al. Gold-installed biostable nanocomplexes for tumor-targeted siRNA delivery in vivo. Chem Commun. 2015;51(93):16656–16659.
  • Tai L, Liu C, Jiang K, et al. A novel penetratin-modified complex for noninvasive intraocular delivery of antisense oligonucleotides. Int J Pharm. 2017;529(1–2):347–356.
  • Yang Y, Jia Y, Xiao Y, et al. Tumor-targeting anti-microRNA-155 delivery based on biodegradable poly(ester amine) and hyaluronic acid shielding for lung cancer therapy. ChemPhysChem. 2018;19(16):2058–2069.
  • Zhao Y, He Z, Gao H, et al. Fine tuning of core-shell structure of hyaluronic acid/cell-penetrating peptides/siRNA nanoparticles for enhanced gene delivery to macrophages in antiatherosclerotic therapy. Biomacromolecules. 2018;19(7):2944–2956.
  • Kim E-J, Shim G, Kim K, et al. Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. J Gene Med. 2009;11(9):791–803.
  • Choi K, Jang M, Kim JH, et al. Tumor-specific delivery of siRNA using supramolecular assembly of hyaluronic acid nanoparticles and 2b RNA-binding protein/siRNA complexes. Biomaterials. 2014;35(25):7121–7132.
  • Chen HY, Yang J, Lin C, et al. Structural basis for RNA-silencing suppression by tomato aspermy virus protein 2b. EMBO Rep. 2008;9(8):754–760.
  • Choi KY, Silvestre OF, Huang X, et al. A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo. Nat Protoc. 2014;9(8):1900–1915.
  • Choi KY, Silvestre OF, Huang X, et al. Versatile RNA interference nanoplatform for systemic delivery of RNAs. ACS Nano. 2014;8(5):4559–4570.
  • Forti E, Kryukov O, Elovic E, et al. A bridge to silencing: co-assembling anionic nanoparticles of siRNA and hyaluronan sulfate via calcium ion bridges. J Control Release. 2016;232:215–227.
  • Ran R, Liu Y, Gao H, et al. PEGylated hyaluronic acid-modified liposomal delivery system with anti-γ-glutamylcuclotransferase siRNA for drug-resistant MCF-7 breast cancer therapy. J Pharm Sci. 2015;104(2):476–484.
  • Sun Q, Kang Z, Xue L, et al. A collaborative assembly strategy for tumor-targeted siRNA delivery. J Am Chem Soc. 2015;137(18):6000–6010.
  • Nascimento TL, Hillaireau H, Vergnaud J, et al. Hyaluronic acid-conjugated lipoplexes for targeted delivery of siRNA in a murine metastatic lung cancer model. Int J Pharm. 2016;514(1):103–111.
  • Nascimento TL, Hillaireau H, Noiray M, et al. Supramolecular organization and siRNA binding of hyaluronic acid-coated lipoplexes for targeted delivery to the CD44 receptor. Langmuir. 2015;31(41):11186–11194.
  • Shen Y, Wang J, Li Y, et al. Co-delivery of siRNA and paclitaxel into cancer cells by hyaluronic acid modified redox-sensitive disulfide-cross-linked PLGA-PEI nanoparticles. RSC Adv. 2015;5(58):46464–46479.
  • Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed Nanotechnol Biol Med. 2015;11(2):313–327.
  • Chen Z, Li Z, Lin Y, et al. Bioresponsive hyaluronic acid-capped mesoporous silica nanoparticles for targeted drug delivery. Chem Eur J. 2013;19(5):1778–1783.
  • Shahin SA, Wang R, Simargi SI, et al. Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomed Nanotechnol Biol Med. 2018;14(4):1381–1394.
  • Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973;52(2):456–467.
  • Lee MS, Lee JE, Byun E, et al. Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa-hyaluronic acid conjugate. J Control Release. 2014;192:122–130.
  • Qiu C, Wei W, Sun J, et al. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy. Nanoscale. 2016;8(26):13033–13044.
  • Hou C, Bai H, Wang Z, et al. A hyaluronan-based nanosystem enables combined anti-inflammation of mTOR gene silencing and pharmacotherapy. Carbohydr Polym. 2018;195:339–348.
  • Shi K, Fang Y, Gao S, et al. Inorganic kernel – supported asymmetric hybrid vesicles for targeting delivery of STAT3-decoy oligonucleotides to overcome anti-HER2 therapeutic resistance of BT474R. J Control Release. 2018;279:53–68.
  • Jadhav S, Käkelä Y, Mäkilä J, et al. Synthesis and in vivo PET imaging of hyaluronan conjugates of oligonucleotides. Bioconjug Chem. 2016;27(2):391–403.
  • Jonnalagadda S, Smith C, Mhango H, et al. The number of lymph node metastases as a prognostic factor in patients with N1 non-small cell lung cancer. Chest. 2011;140(2):433–440.
  • Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92(16):7297–7301.
  • Guo S, Huang L. Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. J Nanomater. 2011;2011:1–12.
  • Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007;83(3):185–194.
  • Ossipov DA. Nanostructured hyaluronic acid based materials for active delivery to cancer. Expert Opin Drug Deliv. 2010;7(6):681–703.
  • Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002;99(17):11393–11398.
  • Kageyama S, Iwaki H, Inoue H, et al. A novel tumor-related protein, C7orf24, identified by proteome differential display of bladder urothelial carcinoma. Proteomics Clin Appl. 2007;1(2):192–199.
  • Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene. 2003;22(53):8581–8589.
  • Ahmed N, Abubaker K, Findlay J, et al. Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Target. 2010;10(3):268–278.
  • Da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Ann Rev Pathol. 2011;6:49–69.
  • Sandhu SK, Volinia S, Costinean S, et al. miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Eμ-miR-155 transgenic mouse model. Proc Natl Acad Sci USA. 2012;109(49):20047–20052.
  • Furtek SL, Backos DS, Matheson CJ, et al. Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol. 2016;11(2):308–318.
  • Tebbutt N, Pedersen MW, Johns TG. Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer. 2013;13(9):663–673.
  • Swain SM, Baselga J, Kim SB, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. New Engl J Med. 2015;372(8):724–734.
  • de la Rosa JMR, Tirella A, Gennari A, et al. The CD44-mediated uptake of hyaluronic acid-based carriers in macrophages. Adv Healthcare Mater. 2017;6(4):1601012.
  • Kim KS, Hur W, Park SJ, et al. Bioimaging for targeted delivery of hyaluronic acid derivatives to the livers in cirrhotic mice using quantum dots. ACS Nano. 2010;4(6):3005–3014.
  • Soutschek J, Akins A, Bramlage B, et al. Therapeutic silencing of endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432(7014):173–178.
  • Breitkopf K, Haas S, Wiercinska E, et al. Anti-TGF-beta strategies for the treatment of chronic liver disease. Alcohol Clin Exp Res. 2005;29(11Suppl):121S–131S.
  • Abrams MT, Koser ML, Seitzer J, et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol Ther. 2010;18(1):171–180.
  • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–335.
  • Hu Y, Liu J, Wu YF, et al. mTOR and autophagy in regulation of acute lung injury: a review and perspective. Microbes Infect. 2014;19(9):727–734.
  • Lee GY, Kim JH, Choi KY, et al. Hyaluronic Acid Nanoparticles for Active targeting Atherosclerosis. Biomaterials. 2015;53:341–348.
  • Moore KJ, Sheedy FJ, Fisher EA. Macrophages in Atherosclerosis: a Dynamic Balance. Nat Rev Immunol. 2013;13(10):709–721.
  • Kzhyshkowska J, Neyen C, Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology. 2012;217(5):492–502.
  • Kume M, Kita T. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) in atherosclerosis. Trends Cardiovasc Med. 2001;11(1):22–25.
  • Campbell JP, McFarland TJ, Stout JT. Ocular gene therapy. Dev Ophthalmol. 2016;55:317–321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.